

Columbus State University CSU ePress

Theses and Dissertations

Student Publications

6-2006

A Multimetric Benthic Index for Georgia's Wadeable Streams

Amanda Lynn Middleton Columbus State University

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

Part of the Earth Sciences Commons

Recommended Citation

Middleton, Amanda Lynn, "A Multimetric Benthic Index for Georgia's Wadeable Streams" (2006). *Theses and Dissertations*. 68.

https://csuepress.columbusstate.edu/theses_dissertations/68

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

A MULTIMETRIC BENTHIC INDEX FOR GEORGIA'S WADEABLE STREAMS.

Amanda Lynn Middleton

Digitized by the Internet Archive in 2012 with funding from LYRASIS Members and Sloan Foundation

http://archive.org/details/multimetricbenth00midd

Columbus State University

College of Science

The Graduate Program in Environmental Science

A Multimetric Benthic Index for Georgia's Wadeable Streams

A Thesis in

Environmental Science

Bу

Amanda Lynn Middleton

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

June 2006

© 2006 by Amanda Lynn Middleton

I have submitted this thesis in partial fulfillment of the requirements for the degree of Master of Science.

17 July 2006

<u>Grand</u>, <u>J. Middlet</u> Amanda Lynn Middleton

We approve the thesis of Amanda Lynn Middleton as presented here.

25 JULY 2006

James A. Gore, Department Chair of

Environmental Science Policy & Geography

26 July 2006

George Stanton, Professor of Biology

uly 2006 26 Date

Julie Ballenger, Professor of Biology

TABLE OF CONTENTS

List of Figures	iv
List of Tables	x
Abstract	xvii
Introduction	1
Methods	9
Results	14
Discussion	140
Appendix A	152
Appendix B	173
Appendix C	
Appendix D	208
Appendix E	216
Appendix F	218

LIST OF FIGURES

Figure Page		
1	Level III & Level IV Ecoregions of Georgia16	
2	Georgia Ecoregions Reference Sites Sampled17	
3	Georgia Ecoregions Impaired Sites Sampled18	
4	Ecoregion 45 – Piedmont20	
5	Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 4521	
6	45a – Southern Inner Piedmont26	
7	Typical Reference Stream – Subecoregion 45a26	
8	Typical Impaired Stream –Subecoregion 45a27	
9	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 45a	
10	45b – Southern Outer Piedmont29	
11	Typical Reference Stream – Subecoregion 45b	
12	Typical Impaired Stream – Subecoregion 45b	
13	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 45b	
14	45c – Carolina Slate Belt	
15	Typical Reference Stream – Subecoregion 45c	
16	Typical Impaired Stream – Subecoregion 45c	
17	Discrimination Index Characteristic between Reference and Impaired Streams for Subecoregion 45c	
18	45d – Talladega Upland	
19	Typical Reference Stream Subecoregion 45d	

20	Typical Impaired Stream – Subecoregion 45d	38
21	Discrimination Index Characteristic between Reference and Impaired Streams for Subecoregion 45d	39
22	Subecoregion 45h – Pine Mountain Ridges	41
23	Typical Reference Stream – Subecoregion 45h	41
24	Typical Impaired Stream – Subecoregion 45h	42
25	Discrimination Index Characteristic between Reference and Impaired Streams for Subecoregion 45h	43
26	Ecoregion 65 – Southeastern Plains	45
27	Discrimination Index Characteristic between Reference and Impaired Streams for Ecoregion 65	46
28	65c – Sand Hills	52
29	Typical Reference Stream – Subecoregion 65c	52
30	Typical Impaired Stream – Subecoregion 65c	53
31	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65c	54
32	65d – Southern Hilly Gulf Coastal Plain	55
33	Typical Reference Stream – Subecoregion 65d	56
34	Typical Impaired Stream – Subecoregion 65d	56
35	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65d	58
36	65g – Dougherty Plain	59
37	Typical Reference Stream – Subecoregion 65g	60
38	Typical Impaired Stream – Subecoregion 65g	60

39	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65g61
40	65h – Tifton Upland63
41	Typical Reference Stream – Subecoregion 65h63
42	Typical Impaired Stream – Subecoregion 65h64
43	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65h66
44	65k Coastal Plain Red Uplands67
45	Typical Reference Stream – Subecoregion 65k68
46	Typical Impaired Stream – Subecoregion 65k
47	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65k70
48	65I - Atlantic Southern Loam Plains (Vidalia Uplands)71
49	Typical Reference Stream – Subecoregion 65I72
50	Typical Impaired Stream – Subecoregion 65I72
51	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65174
52	65o – Tallahassee Hills/Valdosta Limesink76
53	Typical Reference Stream – Subecoregion 65076
54	Typical Impaired Stream - Subecoregion 65077
55	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65078
56	Ecoregion 66 – Blue Ridge80
57	Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 6681
58	66d - Southern Crystalline Ridges & Mountains

59	Typical Reference Stream – Subecoregion 66d	85
60	Typical Impaired Stream – Subecoregion 66d	86
61	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 66d	87
62	66g – Southern Metasedimentary Mountains	88
63	Typical Reference Stream – Subecoregion 66g	89
64	Typical Impaired Stream – Subecoregion 66g	89
65	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 66g	90
66	66j-Broad Basins	92
67	Typical Reference Stream Subecoregion 66j	92
68	Typical Impaired Stream – Subecoregion 66j	93
69	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 66j	94
70	Ecoregion 67 – Ridge & Valley	95
71	Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 67	97
72	67f&i – Southern Limestone/Dolomite Valleys & Low Rolling Hills and Southern Dissected Ridges & Knobs	99
73	Typical Reference Stream – Subecoregion 67f&I	99
74	Typical Impaired Stream – Subecoregion 67f&l	100
75	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 67f&I	101
76	67g – Southern Shale Valleys	102
77	Typical Reference Stream - Subecoregion 67g	103
78	Typical Impaired Stream – Subecoregion 67g	103

79	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 67g104
80	67h-Southern Sandstone Ridges106
81	Typical Reference Stream - Subecoregion 67h106
82	Typical Impaired Stream – Subecoregion 67h107
83	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 67h108
84	68 - Southwestern Appalachians109
85	Typical Reference Stream - Subecoregion 68c&d110
86	Typical Impaired Stream - Subecoregion 68c&d110
87	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 68c&d111
88	Ecoregion 75 – Southern Coastal Plain113
89	Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 75114
90	75e - Okefenokee Plains
91	Typical Reference Stream - Subecoregion 75e119
92	Typical Impaired Stream – Subecoregion 75e120
93	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75e121
94	75f - Sea Island Flatwoods122
95	Typical Reference Stream – Subecoregion 75f123
96	Typical Impaired Stream – Subecoregion 75f123
97	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75f124
98	75h – Bacon Terraces126

99	Typical Reference Stream – Subecoregion 75h126
100	Typical Impaired Stream – Subecoregion 75h127
101	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75h128
102	75j-Sea Islands/Coastal Marsh129
103	Typical Reference Stream – Subecoregion 75j 130
104	Typical Impaired Stream – Subecoregion 75j130
105	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75j131
106	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75j Nontidal135
107	Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75j Tidal

ix

LIST OF TABLES

Tab	le Page
1	Stream Rating
2	Index 4520
3	Descriptive Statistics for Reference Streams in Ecoregion 4521
4	Description of Numeric Ranking for Ecoregion 4522
5	Stream Rating for Ecoregion 4523
6	Index 45a27
7	Descriptive Statistics for Reference Streams in Subecoregion 45a27
8	Description of Numeric Ranking for Subecoregion 45a28
9	Stream Rating for Subecoregion 45a29
10	Index 45b
11	Descriptive Statistics for Reference Streams in Subecoregion 45b
12	Description of Numeric Ranking for Subecoregion 45b32
13	Stream Rating for Subecoregion 45b
14	Index 45c34
15	Descriptive Statistics for Reference Streams in Subecoregion 45c35
16	Description of Numeric Ranking for Subecoregion 45c
17	Stream Rating for Subecoregion 45c
18	Index 45d

19	Descriptive Statistics for Reference Streams in Subecoregion 45d
20	Description of Numeric Ranking for Subecoregion 45d40
21	Stream Rating for Subecoregion 45d40
22	Index 45h42
23	Descriptive Statistics for Reference Streams in Subecoregion 45h43
24	Description of Numeric Ranking for Subecoregion 45h44
25	Stream Rating for Subecoregion 45h44
26	Index 6545
27	Descriptive Statistics for Reference Streams in Ecoregion 6546
28	Description of Numeric Ranking for Ecoregion 6547
29	Stream Rating for Ecoregion 6548
30	Index 65c53
31	Descriptive Statistics for Reference Streams in Subecoregion 65c53
32	Description of Numeric Ranking for Subecoregion 65c54
33	Stream Rating for Subecoregion 65c55
34	Index 65d57
35	Descriptive Statistics for Reference Streams in Subecoregion 65d
36	Description of Numeric Ranking for Subecoregion 65d58
37	Stream Rating for Subecoregion 65d59
38	Index 65g60

39	Descriptive Statistics for Reference Streams in Subecoregion 65g
40	Description of Numeric Ranking for Subecoregion 65g62
41	Stream Rating for Subecoregion 65g62
42	Index 65h64
43	Descriptive Statistics for Reference Streams in Subecoregion 65h65
44	Description of Numeric Ranking for Subecoregion 65h66
45	Stream Rating for Subecoregion 65h67
46	Index 65k69
47	Descriptive Statistics for Reference Streams in Subecoregion 65k69
48	Description of Numeric Ranking for Subecoregion 65k70
49	Stream Rating for Subecoregion 65k71
50	Index 65173
51	Descriptive Statistics for Reference Streams in Subecoregion 65I73
52	Description of Numeric Ranking for Subecoregion 65174
53	Stream Rating for Subecoregion 65I75
54	Index 65077
55	Descriptive Statistics for Reference Streams in Subecoregion 65078
56	Description of Numeric Ranking for Subecoregion 65079
57	Stream Rating for Subecoregion 65079
58	Index 66

59	Descriptive Statistics for Reference Streams in Ecoregion 66
60	Description of Numeric Ranking for Ecoregion 6682
61	Stream Rating for Ecoregion 6683
62	Index 66d86
63	Descriptive Statistics for Reference Streams in Subecoregion 66d
64	Description of Numeric Ranking for Subecoregion 66d87
65	Stream Rating for Subecoregion 66d
66	Index 66g
67	Descriptive Statistics for Reference Streams in Subecoregion 66g90
68	Description of Numeric Ranking for Subecoregion 66g91
69	Stream Rating for Subecoregion 66g91
70	Index 66j
71	Descriptive Statistics for Reference Streams in Subecoregion 66j
72	Description of Numeric Ranking for Subecoregion 66j94
73	Stream Rating for Subecoregion 66j96
74	Index 67
75	Descriptive Statistics for Reference Streams in Ecoregion 6796
76	Description of Numeric Ranking for Ecoregion 6797
77	Stream Rating for Ecoregion 67
78	Index 67f&i

79	Descriptive Statistics for Reference Streams in Subecoregion 67f&I
80	Description of Numeric Ranking for Subecoregion 67f&i101
81	Stream Rating for Subecoregion 67f&i102
82	Index 67g103
83	Descriptive Statistics for Reference Streams Subecoregion 67g104
84	Description of Numeric Ranking for Subecoregion 67g105
85	Stream Rating for Subecoregion 67g105
86	Index 67h107
87	Descriptive Statistics for Reference Streams in Subecoregion 67h107
88	Description of Numeric Ranking for Subecoregion 67h108
89	Stream Rating for Subecoregion 67g109
90	Index 68c&d110
91	Descriptive Statistics for Reference Streams in Subecoregion 68c&d111
92	Description of Numeric Ranking for Subecoregion 68c&d112
93	Stream Rating for Subecoregion 68c&d112
94	Index 75
95	Descriptive Statistics for Reference Streams in Ecoregion 75114
96	Description of Numeric Ranking for Ecoregion 75115
97	Stream Rating for Ecoregion 75116
98	Index 75e

99	Descriptive Statistics for Reference Streams in Subecoregion 75e
100	Description of Numeric Ranking for Subecoregion 75e
101	Stream Rating for Subecoregion 75e
102	Index 75f 123
103	Descriptive Statistics for Reference Streams in Subecoregion 75f124
104	Description of Numeric Ranking for Subecoregion 75f125
105	Stream Rating for Subecoregion 75f125
106	Index 75h127
107	Descriptive Statistics for Reference Streams in Subecoregion 75h127
108	Description of Numeric Ranking for Subecoregion 75h128
109	Stream Rating for Subecoregion 75h129
110	Index 75j130
111	Descriptive Statistics for Reference Streams in Subecoregion 75j
112	Description of Numeric Ranking for Subecoregion 75j132
113	Stream Rating for Subecoregion 75j
114	Index 75j Nontidal134
115	Descriptive Statistics for Reference Streams in Subecoregion 75j Nontidal134
116	Description of Numeric Ranking for Subecoregion 75j Nontidal135
117	Stream Rating for Subecoregion 75j Nontidal136
118	Index 75j Tidal

119	Descriptive Statistics for Reference Streams in Subecoregion 75j Tidal	136
120	Description of Numeric Ranking for Subecoregion 75j Tidal	137
121	Stream Rating for Subecoregion 75j Tidal	138
122	Correlations between Index Scores and Percent Land Use: Ecoregion Level	138
123	Correlations between Index Scores and Percent Land Use: Subecoregion Level	139

Abstract

Using an ecoregional approach, multimetric indices were developed to describe stream condition in each geographically distinct region of Georgia. Collected from predetermined reference and impaired condition streams,

macroinvertebrate data were used to develop multimetric indices. Multimetric indices identified a range of stream conditions, as well as, the overall health of aquatic ecosystems. Based on multimetric indices, the Multimetric Rating System grouped streams according to overall stream condition. The Multimetric Rating System used multiple indices to describe various facets of stream condition. Therefore, it may be concluded that the Multimetric Rating System is a robust water management tool that may be used to evaluate stream condition, determine water management decisions, and describe water quality criteria.

Introduction

As part of the Clean Water Act (CWA) Section 101 (a), it is the duty of each state to monitor and assess the chemical, physical, and biological conditions of streams within its boundaries. Therefore, states are required to consider the "biological integrity" of their waters when developing stream monitoring procedures (Berry 2000). Biotic indices are accepted by the Environmental Protection Agency as a method for assessing the biological health or condition of wadeable streams (Barbour et al. 1999).

States must also determine water quality standards for all water bodies as required by the CWA Section 305(b). Water quality standards establish designated use and criteria for each water body, which must be maintained for all waters within each state (Berry 2000). State agencies must first define water quality standards and then determine a method of monitoring these standards. In some states, biological indices have been used to assess and monitor streams in order to maintain water quality standards set by states throughout the United States (Barbour 1997).

Beginning in the 1970's with the CWA, biological monitoring has developed into a widely used tool for tracking the condition of water resources. In the United States, the chemical condition of water resources was the only consideration in monitoring and remediating processes before the 1970's (Berry 2000). During the last twenty years, the United States has made great improvements eliminating point-source pollution and, as a result, chemical contamination has been greatly reduced. Currently, the major impairment concern for surface waters is non-point source pollution (Barbour 1997). Biological assessment has been found to be an equally effective tool for assessing both point and non-point source pollution (Karr 1991).

For waterbodies that have been shown to be impaired, states must develop a plan for returning that waterbody to an unimpaired status. Important regulatory controls, which are intended to accomplish this task, are Total Maximum Daily Loads (TMDLs) of target nonpoint source contaminants, ranging from metals and nutrients to suspended sediment. According to the CWA Section 303(d), state regulatory agencies must establish TMDLs for each water body that has not attained water quality standards after imposing technologybased controls (Barbour et al. 1999). Biological assessments of the structure and function of lotic communities can determine whether or not water quality standards have been achieved and if TMDLs are required for a specific water body.

A broadly applicable indicator for use in biological assessment is the Index of Biotic Integrity (IBI) (Karr 1981). The IBI approach was developed to identify levels of stream impairment using metrics based upon fish assemblages as biological indicators. Using the IBI as a model, many biomonitoring programs have expanded to incorporate several types of multimetric indices using fish, macroinvertebrates, and periphyton assemblage-level data. It has been shown that using multiple assemblages from various trophic levels can provide assessments of a broader array of stressors causing stream impairment (Karr 1991). By monitoring biological indicators, such as the benthic macroinvertebrate community, researchers can describe a given stream or river condition. Macroinvertebrates are considered excellent indicators because they are relatively sedentary and thus can be used to assess long-term change and cumulative effects in a specific location and, depending upon the number of sampling locations and monitoring network design, biological indicators can be used in broader-scale assessments, such as catchments.

According to Murtaugh (1996), an indicator is considered effective if it is sensitive to stressors or other specific factors under observation. When investigating stream condition, macroinvertebrate community assemblages can provide researchers with a description of the stream's condition (Resh 1995). Stream community structures are altered by human disturbance and can be used to identify the type and level of disturbance encountered. Using ecological descriptors such as tolerance values, macroinvertebrate assemblages can describe the impairment level of a stream relative to the chosen reference condition (Barbour *et al.* 1999).

The Rapid Bioassessment Protocol (RBP) was developed as a costeffective and time-efficient procedure for assessing wadeable streams (Barbour *et al.* 1999). In its most complete, but rarely applied form, the RBP uses fish, benthic macroinvertebrate, and periphyton assemblage-level data to develop a multimetric index, which is used as the indicator of stream impairment. Metrics are used to quantify different attributes of the stream biota (Jessup and Gerritsen 2000). The choice of final metrics ultimately used in an index is based, in part, on their relationship to ecoregional characteristics and response to stressors (Barbour *et al.* 1999).

Several methods have been used to classify streams according to their abiotic characteristics. Ricker (1934) developed a stream classification for streams in Ontario, Canada based upon the size of the stream, substrate material, the diversity and abundance of the biota, and the physical and chemical characteristics of the water body. Ricker developed this system to group streams according to their similar abiotic characteristics. This technique was used to investigate streams with similar physical and chemical properties, therefore defining each stream's biological characteristics without biased abiotic information.

More recently, Omernik (1987) developed a map of ecoregions for the United States as a framework for grouping ecosystems, both aquatic and terrestrial. Ecoregional groups are based upon patterns of topography, geology and soil, and land use that are intended to minimize within-group variability and maximize among-group variability. For an index to be effective, abiotic differences such as variation in catchment geology must first be eliminated. Using the ecoregion approach, multimetric indices can be more easily calibrated to detect impairment (Jessup and Gerritsen 2000). Therefore, biotic indices are developed specifically for each ecoregion and the streams within are compared to assess each stream's condition (Paul and Gerritsen 2002).

Multimetric indices are used to describe the ecological characteristics and detect threats to biological integrity of a stream (Rankin 1994). Metrics from

richness, composition, tolerance/intolerance, and habitat/trophic biological categories are evaluated to determine their ability to detect differences in reference and impaired conditions. Streams are grouped according to their physical and chemical characteristics and are compared within groups. Usually between six to eight metrics are chosen for an index and assigned a quantitative index score for each stream. Based upon variation from the least impaired sites, the index score describes each stream relative to their level of impairment. Once a quantitative rating is assigned, the index score can be described by a qualitative rating.

Using quantitative index scores to describe streams within groups, narrative ratings describe stream characteristics qualitatively. Narrative ratings typically group streams into "good", "fair", and "poor" qualitative categories. Each stream is evaluated based on its potential to achieve the least impaired condition within each group. Qualitative measures of stream condition can be used to determine regulatory and monitoring needs of each stream. Using narrative biological criteria, monitoring agencies can determine action plans for stream conservation and restoration (Karr 1999).

In 1977, Hilsenhoff introduced his biotic index based on organic and nutrient tolerance levels of arthropods. Using one phylum, Hilsenhoff was able to simplify the bioassessment process. Hilsenhoff's biotic index was based upon a 100-individual sample in which each species or genus of arthropod was assigned a tolerance level. Once all individuals from each sample were identified, the tolerance values were averaged together giving each stream a biotic index score (Hilsenhoff 1987).

Originally, the Clean Water Act (CWA) standard for adequate biological support was termed "fishable-swimmable" but this standard has evolved into a more functional "aquatic life-use" designation (Berry 2000). Multimetric indices can also be used to determine aquatic-life use designations; an EPA requirement for nonpoint source management. The Vermont Department of Environmental Conservation uses benthic and fish data, employing multimetric indices, to determine numeric biological criteria (Vermont Department of Environmental Conservation 2004). Numeric criteria are applied and are used to evaluate each water body according to aquatic life use designations. Being the quantitative equivalent of narrative biological criteria, numeric biological criteria can also be used to assess water quality standards.

Several states have developed narrative rating systems to numerically describe biological criteria. In Ohio, the Qualitative Habitat Evaluation Index (QHEI) was developed to determine the aquatic life potential of each water body (Rankin 1989). Each water body is assigned an aquatic use level, which could be applied to aquatic life use designations. The purpose of this system is to describe the physical, chemical, and biological properties of a water system, and therefore protect all facets of this system.

Narrative criteria are used to describe the waterbody's condition or current state, which is based on quantitative data. The QHEI has two main categories of aquatic life uses: Warmwater Habitat (WWH) and Exceptional Warmwater

Habitat (EWH). The WWH is described as the typical habitat condition of rivers and streams in Ohio. The EWH is an aquatic habitat that is exceptional for its fauna and quality of habitat. Narrative criteria of exceptional (EWH), good (WWH), fair, poor, or very poor are assigned to each stream or river (Rankin 1989).

The Benthic Index of Stream Integrity (BISI), developed in Rockdale County, Georgia, assigns each stream with a quantitative rating (Tetra Tech 2001). Using a percentile method, the index score is described by a qualitative rating. Streams with an index score above the 25th percentile are equally divided into "good" and "very good" narrative ratings. Streams rated below the 25th percentile are divided into three groups: "fair", "poor", and "very poor". Narrative ratings are used to describe biological characteristics that are found in each stream category.

With the use of multimetric indices, chemical analysis, and physical habitat assessment, stream assessment methods have been developed to identify the level of stream impairment. Once stream assessment is completed, this information can be used to determine regulatory and monitoring procedures for the study area. The evaluation of stream conditions is an important method for managing water resources (Barbour *et al.* 1999).

The Georgia Environmental Protection Division (GAEPD) began a multiphase project in 1996 to delineate the state into geographically similar Ecoregions. The primary objective of Phase I was to develop biological criteria for wadeable streams using an Ecoregional framework. Using this technique,

biota were sampled from areas with similar geology, land use/cover, vegetation, and topography. Once the level III Ecoregions were refined, as delineated by Omernik in 1987, the Ecoregions were further divided into level IV Ecoregions.

A final map of Georgia's Ecoregions was presented in June 2000 depicting the multiple regions and potential reference sites selected. Based on Ecoregions developed in Phase I, Phase II developed a system for selecting reference sites based on land use data. Reference sites were selected from each Ecoregion level using an unbiased method. For each Ecoregion, the reference condition established a baseline condition describing the resident biota and stream status. A report detailing reference conditions and multimetric indices was produced in 2004 (Gore *et al.* 2004).

Using Rapid Bioassessment techniques, Phase III described the impaired condition of streams in Georgia. For quality control, a random selection of reference sites was resampled to verify the findings from Phase II. As with reference sites in Phase II, impaired sites were selected via GIS land use data. Using the data from Phase II and Phase III, a numeric scoring system was developed to compare streams within an Ecoregion, identify trends, and validate the results of this study.

Methods

The complete methods used for data collection are found in the Quality Assurance Project Plan (QAPP): Ecoregions Reference Site Project for Wadeable Streams in Georgia (Columbus State University 2000). Streams were sampled in all six ecoregions of Georgia and 25 subecoregions including all except three: the Okefenokee Swamp (75g) and Floodplains and Low Terraces (85p and 75i). A total of 111 reference sites and 184 impaired sites were sampled and considered in the developed indices (Omernik 1987). The subecoregions used in this study were taken from the Draft Level IV Sub-Ecoregions of Georgia (Griffith *et al.* 2001).

The sampling phase took place over a two-year period, with all field work occurring between September and February, the designated "index period". Within each stream, a hundred meter reach was sampled, water and macroinvertebrate samples were collected, and a habitat assessment was completed.

Stream sites were selected primarily by Geographic Information Systems (GIS) analysis of land use/land cover data to determine catchment level disturbance (Olson 2001, Gore *et al.* 2004). Once field teams arrived at a stream site, stream condition was evaluated to confirm the GIS designation. Each sample site did not include any major tributaries and was located at least a hundred meters from stream obstructions to reduce instream disturbances.

Macroinvertebrates were collected by the means of a D-frame net using the twenty-jab method (Georgia Bioassessment Protocol). A net mesh size of 595-600 microns was used. Macroinvertebrates were sampled in all habitats including: fast and slow riffles, undercut banks, leaf material, snags, and sandy bottoms. The sampling procedure started at the zero meter mark and continued upstream to reduce habitat disturbance (Columbus State University 2000).

Water samples for laboratory analytical chemistry were collected according to procedures in the Quality Assurance Project Plan (QAPP) (Columbus State University 2000) and were labeled, preserved, and chilled until returned to the lab. Macroinvertebrate samples were transferred to one liter bottles, labeled, and preserved in 95% ethyl alcohol.

From each macroinvertebrate sample, a 200-organism subsample was randomly selected. The original composite sample, taken from all habitats, was evenly spread upon a Caton gridded screen (Caton 1991). Sample squares were chosen using a random number sheet. Each grid square was checked for organisms until all are removed. At least four grids were taken from each sample and then continuously selected until 200 organisms were collected. Once subsampling was complete, macroinvertebrates were identified to the lowest possible taxonomic level.

Based on the raw macroinvertebrate data, a multimetric analysis calculated by *Ecological Data Application System* (EDAS) (MS Access 2000; Tetra Tech Inc. 2001) was used to assess stream condition. Metrics were selected from the following categories of biological information: richness, composition, tolerance/intolerance, and habit/trophic measures, so that each

category was represented when possible. Metrics were grouped into candidate indices for each ecoregion (Gore *et al.* 2004).

The following protocol was used for developing ecoregion based multimetric indices and subsequent rating system. All data were entered, quality checked, and metrics calculated using EDAS (MS Access 2000; Tetra Tech Inc. 2001). *Statistica* (Statsoft Inc. 2000) was used to run the Pearson Product-Moment Correlation and box-and-whisker plots (MDEQ 2003). The Pearson Product-Moment Correlation was used to determine redundancy among metrics. If metrics were too similar, one was eliminated to avoid describing the same ecological characteristic multiple times. Box-and-whisker plots were used to demonstrate the ability of different indices to discriminate between reference and various levels of impaired stream conditions. Desirable indices showed a complete separation in box-and-whisker plots (i.e., no overlap of interquartile ranges) between reference and impaired conditions (see Gore *et al.* (2004), for an expanded description of this procedure).

First, candidate metrics were selected from each biological category, when possible, and calculated in EDAS. Metric data were exported to Excel spreadsheets and the discrimination efficiency and the percentile distribution for each metric were determined. The discrimination efficiency (DE) was determined as follows (MDEQ 2003).

For metrics that increase with stress:

DE = <u>number of impaired sites > the 75th percentile of reference sites</u> total number of impaired sites For metrics that decrease with stress:

DE = <u>number of impaired sites < the 25th percentile of reference sites</u> total number of impaired sites

Metric data were exported to *Statistica*. Once in *Statistica*, reference and impaired conditions were compared using box-and-whisker plots and productmoment correlation (MDEQ 2003). Metrics that revealed low discrimination ability in box-and-whiskers plots were not considered for candidate indices.

When two metrics were calculated as having a Pearson Product-Moment Correlation of greater than 0.90 or less than -0.90, one was automatically eliminated from candidate metrics because of redundancy with other metrics. Metrics with 0.80 to 0.90 Pearson Product-Moment Correlation Coefficient or -0.80 to -0.90 were considered as candidate metrics if the relationship was not similar to other metrics. If candidate metrics had a parallel linear relationship, their relationship was considered to be co-dependent and thus the information provided by that particular metric did not provide additional discriminated. When metrics with linear relationships were encountered, one was eliminated. Once undesirable metrics were eliminated, final candidate metric scores were standardized to a 100-point scale (MDEQ 2003).

From final candidate metric scores, several candidate indices were selected, each including four to seven metrics. Metrics were selected to represent each structural and behavioral category, to discriminate between reference and stressed conditions, and to produce unique information for each index. Each index was compared using the discrimination efficiency and boxand-whisker plots. The discrimination efficiency and box-and-whisker plots revealed whether or not each candidate index discriminated between reference and impaired conditions. The index with the greatest discrimination ability was selected (MDEQ 2003). Selection of the final indices considered the metric selection criteria and chemical and physical data. Any other selection criteria were based on best professional judgment. The ideal index had a box-andwhisker plot with good discrimination efficiency, little or no overlap between reference and impaired conditions, allowed detection of stream impairment, and ranked relative severity of impairment.

Benthic indices were developed for each ecoregion and subecoregion. In ecoregion 75, additional indices were created by grouping tidal and non-tidal streams in subecoregion 75j (including one tidal stream from subecoregion 75f). By grouping tidal and non-tidal streams, indices were found to have higher discrimination efficiencies.

In each index, each stream received an index score. The index score is the average of all standardized metric values used in the index. Each stream also ranked, described, and rated. A stream receives a ranking between 1 and 5, which corresponds with a narrative description of very good, good, fair, poor, and very poor. The final analytical product was the formulation of a numeric rating system for wadeable streams in the state of Georgia, in the context of ecoregional or subecoregional differences. The stream's rating combines the two top categories of very good and good for an "A" rating, fair for a "B" rating, and poor and very poor for a "C" rating.

Results

It was found that subecoregion level indices had higher discrimination efficiencies than ecoregion level indices. Subecoregions with smaller catchment areas tended to have higher discrimination efficiencies than subecoregions with larger catchment areas. Indices for ecoregions in the piedmont and mountain areas (45, 65, 66, 67, and 68) tended to have metrics from all categories, especially richness. In the coastal plains (65 and 75), indices were developed primarily from metric in the composition category and rarely from richness category.

The following streams were excluded from reference sites, because each had at one least characteristic that was not allowed for a reference site: 45c-18, 45d-8, 65g-82, 65g-83, 67g-2, 75j-29. These site were not used in index development, but were included in the final stream rating.

The Multimetric Rating System can be applied to biocriteria development for water management purposes. By determining a threshold of discrimination between impaired and least impaired conditions, streams can be divided into management categories. The following thresholds were established: the 75th percentile for the least impaired condition and the 25th percentile for the most impaired condition. Using these thresholds, water resources managers can make scientifically based water management decisions.

Streams were grouped into three categories to simplify the ranking system for management purposes. In some cases, there was little difference in index

scores between streams of two different categories. The chance of rating error was reduced by grouping streams into three categories.

Categories "1" and "2" of the numeric ranking system were combined to create a group of least impaired sites ("A" rated streams). Least impaired sites require periodic monitoring to evaluate change over time relative to the reference condition. Category "3" ("B" rated streams) encompasses the majority of streams, which vary widely in their numeric range. Category "B" rated streams are impaired streams which require frequent attention to monitor condition change over time. Streams described as "poor" and "very poor" were combined into one group for severely impaired sites ("C" rated streams). Severely impaired sites require frequent monitoring to determine restoration needs and success of restoration attempts.

The Multimetric Rating System was developed based on a percentile method. In each ecoregion, streams with index scores above or equal to the 95th percentile were given the numeric value of "1" or described as having a "very good" stream condition. Index scores, which fell below the 95th percentile yet were equal to or above the 75th percentile received a numeric value of "2" or were described as having a "good" stream condition. Streams with index scores below the 75th percentile and above the 25th percentile received a "fair" stream narrative description. The "poor" description was assigned to streams with index scores equal to or below the 25th percentile yet above the 5th percentile. For streams equal to or below the 5th percentile, the "very poor" narrative description was assigned.

Figure 1. Level III & Level IV Ecoregions of Georgia.

Figure 3. Georgia Ecoregions Impaired Sites Sampled.

Numeric Ranking	Stream Rating	Management Decision
1	0	Continue periodic monitoring to detect
2		change baseline reference condition
3	В	Frequent monitoring critical to detect change in ecological status, lower range especially
4	C	Frequent monitoring necessary to
5	U U	remediation needs and if remediation has been successful

Table 1. Stream Rating. Stream Rating is based on the Numeric Ranking.

Figure 4. Ecoregion 45 - Piedmont.

Table 2. Index 45.

Metric	Metric Category
Coleoptera Taxa	Richness
% Chironomidae	Composition
% Plecoptera	Composition
% Intolerant Individuals	
North Carolina Biotic Index (NCBI)	l olerance / Intolerance

Table 3. Descriptive Statistics for Reference Streams in Ecoregion 45. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Coleoptera								
Taxa	0.6	0.0	1.1	4.5	5.0	8.0	10.8	12.0
%								
Chironomidae	0.7	3.0	7.4	19.6	33.2	41.6	58.2	59.6
% Plecoptera	0.7	0.4	0.4	3.4	6.9	15.5	38.9	74.1
% Intolerant								
Individuals	0.6	3.4	4.0	13.6	23.3	31.2	50.1	78.0
North								
Carolina								
Biotic Index								
(NCBI)	0.6	2.1	3.9	4.8	5.4	6.2	7.7	7.8

Figure 5. Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 45.

Table 4. Description of Numeric Ranking for Ecoregion 45. n=all reference and impaired sites in ecoregion 45.

Index Score	Numeric Ranking	Percentile n= 65
67 and above	1	Above 95 th
50-66	2	Below 95 th , Above 75th
31-49	3	Below 75 th , Above 25th
12-30	4	Below 25 th , Above 5th
11 and below	5	Below 5 th

Stream Rating		A	A		A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	8	8	8	8	8	8	в	8	8
Narrative	Description	very good		very good	very good	very good	good	good	good	7000	poop	dood	poob	good	good	good	good	good	good	good	fair	fair	fair	fair	fair	fair	fair	fair	fair
Numeric	Ranking	-		-	1	-	2	2	2	c	4 0	5	5	5	5	2	2	2	2	2	е	3	e	e	e	e	с	3	e
Index	Score	95		72	71	69	62	62	59	£7	22	56	56	54	53	53	52	50	50	50	49	49	47	47	46	46	44	43	42
	Condition	Reference		Reference	Reference	Reference	Reference	Reference	Impaired	Deference	Reference	Reference	Impaired	Impaired	Reference	Reference	Reference	Reference	Impaired	Impaired	Reference	Reference	Impaired	Reference	Impaired	Impaired	Reference	Impaired	Reference
Sub-	ecoregion	45d		45a	45h	45a	45a	45b	45d	AEA	45d	45c	45h	45a	45d	45c	45h	45h	45d	45d	45c	45b	45a	45h	45b	45a	45b	45b	45h
	StationID	45d-15		45a-89	45h-13	45a-3	HH16	45b-152	45d-14	154-1	45d-16	45c-19	45h-1	45a-90	45d-9	45c-8	45h-9	45h-6	45d-21	45d-11	45c-16	45b-258	45a-38	45h-17	45b-1214	45a-35	HH22	45b-201	45b-357
i	Stream	Terrapin Creek	Hillabahatchee	Creek	Sparks Creek	Davidson Creek	Town Creek	Murder Creek	Big Creek	West Fork	Wallace Creek	Bull Creek	Three Mile Creek	Mountain Creek	Simpson Creek	Dry Fork	Mud Creek	Turkey Creek	Mann Creek	Swinney Branch	Kemp Creek	Rocky Creek	Pond Fork	Barnes Creek	Little Sandy Creek	Smithwick Creek	Copeland Creek	Snapfinger Creek	Trib to Flint River

Table 5. Stream Rating for Ecoregion 45.

m	æ	m		в	æ	m		ш	æ	æ	ш	m	ш	æ	ш	æ		ш		в	в	o	υ	U	υ	υ	U
fair	fair	fair		fair	fair	fair		fair	fair	fair	fair	fair	fair	fair	fair	fair		fair		fair	fair	poor	poor	poor	poor	poor	DOOL
e	e	e		e		e		e	e	m	e	e	e	e	3	e		e		3	3	4	4	4	4	4	4
40	40	40		39	39	37		36	35	35	34	34	34	34	33	33		33		32	31	30	29	29	25	25	24
Impaired	Reference	Reference		Impaired	Impaired	Impaired		Reference	Impaired	Impaired	Impaired	Ref/Removed	Impaired	Impaired	Reference	Reference		Impaired		Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired
45h	45a	45h		45b	45d	45c		45a	45b	45b	45h	45d	45a	45c	45c	45b		45b		45b	45c	45b	45b	45c	45b	45c	45h
45h-11	HH18	45h-16		45b-10	45d-23	45c-17		45a03//	45b-116	45b-3	45h-2	45d-8	45a-31	45c-7	//4	45b-156	45b-	1213		45b-44	45c-10	45b-213	45b-1	45c-3	45b-193	45c-11	45h-13
Pigeon Creek	Whooping Creek	Williams Creek	Little Beaverdam	Creek	Greene Creek	Upton Creek	Middle Fork Broad	River	Indian Creek	Double Branch	Powder Creek	Thompson Creek	Candler Creek	Centerville Branch	Florence Creek	Little Falling Creek		Big Sandy Creek	Trib to North Oconee	River	Cherokee Creek	South River	Shoal Creek	Chickasaw Creek	Trib to Yellow River	Dry Fork Creek	Little Coldwater Creek
	Pigeon Creek 45h-11 45h Impaired 40 3 fair B	Pigeon Creek 45h Impaired 40 3 fair B Whooping Creek HH18 45a Reference 40 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Whooping Creek 4HH8 45a Reference 40 3 fair B Williams Creek 45h-16 55h Reference 40 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B WhoopDic Creek HH18 45a Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Little Beaverdam Little Beaverdam 40 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Whooping Creek HH18 45a Reference 40 3 fair B Whooping Creek 45h-16 45h Reference 40 3 fair B Willioping Creek 45h-16 45h Reference 40 3 fair B Little Beaverdam 45b-10 45b Impaired 39 3 fair B Creek 45b-10 45b Impaired 39 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Whooping Creek 41H18 45a Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Utitle Baarerdam 45h-10 45h Reference 40 3 fair B Creek 45h-10 45b Impaired 39 3 fair B Greene Creek 45h-31 45d Impaired 39 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B WithopDic Creek HH18 45a Reference 40 3 fair B WithopDic Creek HH18 45h Reference 40 3 fair B WithopDic Creek 45h-16 45h Reference 40 3 fair B Utitle Beaverdam 45h-10 45b Impaired 39 3 fair B Creek 456-21 456 Impaired 39 3 fair B Upton Creek 45c-17 45c Impaired 37 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Wnooping Creek HH18 45a Reference 40 3 fair B Wnillams Creek 45h-16 45h Reference 40 3 fair B Wnillams Creek 45h-16 45h Reference 40 3 fair B Uption Creek 45b-10 45b Impaired 39 3 fair B Greene Creek 45c-17 45c Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 37 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Wincoping Creek 41H18 45a Reference 40 3 fair B Wincoping Creek 45h-16 45h Reference 40 3 fair B Winsons Creek 45h-16 5h Reference 40 3 fair B Utitle Baavedam 45b-10 45b Impaired 39 3 fair B Usene Creek 45c-17 45c Impaired 39 3 fair B Upton Creek 45c-17 45c Impaired 37 3 fair B River 45a03/ 45a Reference 36 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windong Creek 45h-16 45a Reference 40 3 fair B Windong Creek 45h-16 45h Reference 40 3 fair B Windong Creek 45h-16 45h Reference 40 3 fair B Utitle Beaverdam 45b-10 45b Reference 39 3 fair B Creek 45b-73 45d Impaired 39 3 fair B Upton Creek 456-77 45c Impaired 37 3 fair B Uddle Fork Broad 45a-17 45c Impaired 37 3 fair B Midle Fork Broad 45a-16 45a Reference 36 3 fair B Midle Fork Broad 45a-16 Impaired 37 3 fair B Midle Fork Broad	Pigeon Creek 415-11 455 Impaired 40 3 fair B Pigeon Creek 411-18 45-a Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-10 5h Reference 40 3 fair B Creek 45b-10 45b Impaired 39 3 fair B Greene Creek 45c-17 45c Impaired 39 3 fair B Upton Creek 45c-17 45c Impaired 37 3 fair B Midle Fork Broat 45a-13 45a Reference 36 3 fair B Multion Creek 45a-13 45a Impaired 35 3 fair B Multion Creek 45b-116 45b Impaired 35 3 fair B Multion Creek <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windoping Creek 45h1 45a Reference 40 3 fair B Windoping Creek 45h-16 45h Reference 40 3 fair B Windoping Creek 45h-10 45h Reference 40 3 fair B Utitle Baaverdam 45b-10 45h Reference 39 3 fair B Upton Creek 45c-17 45c Impaired 39 3 fair B Widel A5c-17 45c Impaired 37 3 fair B Widel 45c-16 45b Impaired 37 3 fair B River 45b-16 45b Impaired 35 3 fair B Model Forek 45b-3 45b Impaired 35 3 fair B Duuble Baarch 4</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windians Creek 45h-16 45h Reference 40 3 fair B Windians Creek 45h-16 45h Reference 40 3 fair B Willians Creek 45h-16 45h Reference 40 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-17 45c Impaired 37 3 fair B Middle Fork Broad 455-16 Impaired 37 3 fair B Middle Fork Broad 455-16 Thepaired 35 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Dubro Branch 455-16 Impa</td> <td>Pigeon Creek 43h-11 45h Impaired 40 3 fair B Willams Creek 43h-16 45a Reference 40 3 fair B Willams Creek 45h-16 45h Reference 40 3 fair B Unitians Creek 45h-10 45b Impaired 39 3 fair B Creek 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Willen Fork Ruad 45c-17 45c Impaired 37 3 fair B Midle Fork Ruad 45c-17 45c Impaired 35 3 fair B Midle Fork Ruad 45c-16 45b Impaired 35 3 fair B Mude Fork Ruad 45b-16 Impaired 35 3 fair B Publon Creek 45</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windoping Creek 45h-11 45a Reference 40 3 fair B Windoping Creek 45h-16 45h Reference 40 3 fair B Windoping Creek 45h-10 45b Reference 40 3 fair B Utitie Baaverdam 45b-10 45b Impaired 39 3 fair B Upton Creek 45c-17 45c Impaired 39 3 fair B Widel 45c-16 45b Impaired 37 3 fair B Upton Creek 45b-16 45b Impaired 35 3 fair B River 45b-3 45b Impaired 35 3 fair B Duole Branch 45b-3 45b Impaired 35 3 fair B Duouble Branch</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Winkiams Creek 45h-16 45h Reference 40 3 fair B Winkiams Creek 45h-16 45h Reference 40 3 fair B Winkiams Creek 45h-16 45h Reference 40 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Greene Creek 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Rouube Branch 455-3 455</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Winsoping Creek 45h-11 45a Reference 40 3 fair B Winsoping Creek 45h-16 45h Reference 40 3 fair B Utile Barvidam 45b-10 45h Impaired 39 3 fair B Utile Barvidam 45b-10 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Middle Fork Broad 45c-17 45c Impaired 35 3 fair B Middle Fork Broad 45c-16 45b Impaired 35 3 fair B Middle Fork Broad 45b-16 Impaired 35 3 fair B Punder Creek 45b-13 45b Impaired 35 3 fair B Punder Creek</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windoping Creek 45h-11 45a Reference 40 3 fair B Windoping Creek 45h-10 45a Reference 40 3 fair B Utities Baavedam 45b-10 45b Impaired 39 3 fair B Utities Baavedam 45b-10 45b Impaired 39 3 fair B Upton Creek 45c-17 45c Impaired 39 3 fair B Wide 45b-16 45b Impaired 39 3 fair B Node 45b-16 45b Impaired 35 3 fair B Node 45b-16 45b Impaired 35 3 fair B Node 45b-16 45b Impaired 35 3 fair B Pouble Branch 45b-3<td>Pigeon Creek 41b-11 45b Impaired 40 3 fair B Williams Creek 41b-11 45a Reference 40 3 fair B Williams Creek 45b-16 45b Reference 40 3 fair B Unition Screek 45b-10 45b Impaired 39 3 fair B Creek 45b-116 45b Impaired 39 3 fair B Upion Creek 45b-116 45c Impaired 39 3 fair B Midia Fork Broad 45b-116 45c Impaired 35 3 fair B Midia Fork Broad 45b-13 45b Impaired 35 3 fair B Midia Fork Broad 45b-13 45b Impaired 35 3 fair B Mode Fork Broad 45b-13 45b Impaired 35 3 fair B River</td><td>Pigeon Creek 43h-11 45h Impaired 40 3 fair B Winkoping Creek 45h-11 45a Reference 40 3 fair B Winkoping Creek 45h-10 45b Reference 40 3 fair B Utitle Barvidam 45b-10 45b Impaired 39 3 fair B Utitle Barvidam 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Middle Fork Broad 45c-17 45c Impaired 35 3 fair B Middle Fork Broad 45c-16 45b Impaired 35 3 fair B Middle Fork Broad 45b-31 45b Impaired 35 3 fair B Middle Fork Broad 45b-31 45b Impaired 35 3 fair B</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-17 45c Impaired 37 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Middle Fork Broad 455-16 Reference 35 3 fair B Duble Branch 455-13 456 Impaired 34 3 fair B Candicr Creek 455-16<td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45a Reference 40 3 fair B Williams Creek 45h-10 45h Reference 40 3 fair B Unition Screek 45h-10 45b Impaired 39 3 fair B Creene Creek 45b-17 45c Impaired 39 3 fair B Orison Creek 45b-116 45b Impaired 39 3 fair B Midel Fork Broad 45b-116 45b Impaired 36 3 fair B Midel Fork Broad 45b-16 Impaired 36 3 fair B Midel Fork Broad 45b-13 45b Impaired 35 3 fair B Model Fork Broad 45b-13 45b Impaired 35 3 fair B Dubio Branch</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Willams Creek 45h-11 45a Reference 40 3 fair B Willams Creek 45h-10 455 Reference 40 3 fair B Unitians Creek 45h-10 45b Impaired 39 3 fair B Usion Creek 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Uption Creek 45c-16 45b Impaired 39 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Duuble Branch 45b-16 Impaired 34 3 fair B Creeteck 45b-3 Reference 34<</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Unton Creek 45h-10 45b Impaired 39 3 fair B Greene Creek 455-17 45c Impaired 39 3 fair B Uption Creek 455-13 456 Impaired 39 3 fair B Midel Fork Broad 455-13 456 Impaired 37 3 fair B Midel Fork Broad 455-16 Impaired 35 3 fair B Midel Fork Broad 455-13 456 Impaired 35 3 fair B Midel Fork Broad 455-14 456 Impaired 35 3 fair B Double Branch</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 455 Reference 40 3 fair B Williams Creek 45h-10 455 Reference 40 3 fair B Untooping Creek 45h-10 45b Impaired 39 3 fair B Creene Creek 45c-17 45c Impaired 39 3 fair B Williams Creek 45c-17 45c Impaired 39 3 fair B Orean Creek 45c-17 45c Impaired 36 3 fair B Mide For KB road 45c-17 45c Impaired 37 3 fair B Mide For KB road 45c-13 45b Impaired 36 3 fair B Mide For KB road 45c-13 45b Impaired 34 3 fair B</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 35 3 fair B Uptor Creek 455-13 45b Impaired 35 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Candid Creek</td><td>Pigeon Creek 415-11 455-16 Impaired 40 3 fair B Williams Creek 415-11 455-16 455-16 455-17 455-16 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17</td></td></td>	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windoping Creek 45h1 45a Reference 40 3 fair B Windoping Creek 45h-16 45h Reference 40 3 fair B Windoping Creek 45h-10 45h Reference 40 3 fair B Utitle Baaverdam 45b-10 45h Reference 39 3 fair B Upton Creek 45c-17 45c Impaired 39 3 fair B Widel A5c-17 45c Impaired 37 3 fair B Widel 45c-16 45b Impaired 37 3 fair B River 45b-16 45b Impaired 35 3 fair B Model Forek 45b-3 45b Impaired 35 3 fair B Duuble Baarch 4	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windians Creek 45h-16 45h Reference 40 3 fair B Windians Creek 45h-16 45h Reference 40 3 fair B Willians Creek 45h-16 45h Reference 40 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-17 45c Impaired 37 3 fair B Middle Fork Broad 455-16 Impaired 37 3 fair B Middle Fork Broad 455-16 Thepaired 35 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Dubro Branch 455-16 Impa	Pigeon Creek 43h-11 45h Impaired 40 3 fair B Willams Creek 43h-16 45a Reference 40 3 fair B Willams Creek 45h-16 45h Reference 40 3 fair B Unitians Creek 45h-10 45b Impaired 39 3 fair B Creek 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Willen Fork Ruad 45c-17 45c Impaired 37 3 fair B Midle Fork Ruad 45c-17 45c Impaired 35 3 fair B Midle Fork Ruad 45c-16 45b Impaired 35 3 fair B Mude Fork Ruad 45b-16 Impaired 35 3 fair B Publon Creek 45	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windoping Creek 45h-11 45a Reference 40 3 fair B Windoping Creek 45h-16 45h Reference 40 3 fair B Windoping Creek 45h-10 45b Reference 40 3 fair B Utitie Baaverdam 45b-10 45b Impaired 39 3 fair B Upton Creek 45c-17 45c Impaired 39 3 fair B Widel 45c-16 45b Impaired 37 3 fair B Upton Creek 45b-16 45b Impaired 35 3 fair B River 45b-3 45b Impaired 35 3 fair B Duole Branch 45b-3 45b Impaired 35 3 fair B Duouble Branch	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Winkiams Creek 45h-16 45h Reference 40 3 fair B Winkiams Creek 45h-16 45h Reference 40 3 fair B Winkiams Creek 45h-16 45h Reference 40 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Greene Creek 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Rouube Branch 455-3 455	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Winsoping Creek 45h-11 45a Reference 40 3 fair B Winsoping Creek 45h-16 45h Reference 40 3 fair B Utile Barvidam 45b-10 45h Impaired 39 3 fair B Utile Barvidam 45b-10 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Middle Fork Broad 45c-17 45c Impaired 35 3 fair B Middle Fork Broad 45c-16 45b Impaired 35 3 fair B Middle Fork Broad 45b-16 Impaired 35 3 fair B Punder Creek 45b-13 45b Impaired 35 3 fair B Punder Creek	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Windoping Creek 45h-11 45a Reference 40 3 fair B Windoping Creek 45h-10 45a Reference 40 3 fair B Utities Baavedam 45b-10 45b Impaired 39 3 fair B Utities Baavedam 45b-10 45b Impaired 39 3 fair B Upton Creek 45c-17 45c Impaired 39 3 fair B Wide 45b-16 45b Impaired 39 3 fair B Node 45b-16 45b Impaired 35 3 fair B Node 45b-16 45b Impaired 35 3 fair B Node 45b-16 45b Impaired 35 3 fair B Pouble Branch 45b-3 <td>Pigeon Creek 41b-11 45b Impaired 40 3 fair B Williams Creek 41b-11 45a Reference 40 3 fair B Williams Creek 45b-16 45b Reference 40 3 fair B Unition Screek 45b-10 45b Impaired 39 3 fair B Creek 45b-116 45b Impaired 39 3 fair B Upion Creek 45b-116 45c Impaired 39 3 fair B Midia Fork Broad 45b-116 45c Impaired 35 3 fair B Midia Fork Broad 45b-13 45b Impaired 35 3 fair B Midia Fork Broad 45b-13 45b Impaired 35 3 fair B Mode Fork Broad 45b-13 45b Impaired 35 3 fair B River</td> <td>Pigeon Creek 43h-11 45h Impaired 40 3 fair B Winkoping Creek 45h-11 45a Reference 40 3 fair B Winkoping Creek 45h-10 45b Reference 40 3 fair B Utitle Barvidam 45b-10 45b Impaired 39 3 fair B Utitle Barvidam 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Middle Fork Broad 45c-17 45c Impaired 35 3 fair B Middle Fork Broad 45c-16 45b Impaired 35 3 fair B Middle Fork Broad 45b-31 45b Impaired 35 3 fair B Middle Fork Broad 45b-31 45b Impaired 35 3 fair B</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-17 45c Impaired 37 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Middle Fork Broad 455-16 Reference 35 3 fair B Duble Branch 455-13 456 Impaired 34 3 fair B Candicr Creek 455-16<td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45a Reference 40 3 fair B Williams Creek 45h-10 45h Reference 40 3 fair B Unition Screek 45h-10 45b Impaired 39 3 fair B Creene Creek 45b-17 45c Impaired 39 3 fair B Orison Creek 45b-116 45b Impaired 39 3 fair B Midel Fork Broad 45b-116 45b Impaired 36 3 fair B Midel Fork Broad 45b-16 Impaired 36 3 fair B Midel Fork Broad 45b-13 45b Impaired 35 3 fair B Model Fork Broad 45b-13 45b Impaired 35 3 fair B Dubio Branch</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Willams Creek 45h-11 45a Reference 40 3 fair B Willams Creek 45h-10 455 Reference 40 3 fair B Unitians Creek 45h-10 45b Impaired 39 3 fair B Usion Creek 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Uption Creek 45c-16 45b Impaired 39 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Duuble Branch 45b-16 Impaired 34 3 fair B Creeteck 45b-3 Reference 34<</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Unton Creek 45h-10 45b Impaired 39 3 fair B Greene Creek 455-17 45c Impaired 39 3 fair B Uption Creek 455-13 456 Impaired 39 3 fair B Midel Fork Broad 455-13 456 Impaired 37 3 fair B Midel Fork Broad 455-16 Impaired 35 3 fair B Midel Fork Broad 455-13 456 Impaired 35 3 fair B Midel Fork Broad 455-14 456 Impaired 35 3 fair B Double Branch</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 455 Reference 40 3 fair B Williams Creek 45h-10 455 Reference 40 3 fair B Untooping Creek 45h-10 45b Impaired 39 3 fair B Creene Creek 45c-17 45c Impaired 39 3 fair B Williams Creek 45c-17 45c Impaired 39 3 fair B Orean Creek 45c-17 45c Impaired 36 3 fair B Mide For KB road 45c-17 45c Impaired 37 3 fair B Mide For KB road 45c-13 45b Impaired 36 3 fair B Mide For KB road 45c-13 45b Impaired 34 3 fair B</td><td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 35 3 fair B Uptor Creek 455-13 45b Impaired 35 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Candid Creek</td><td>Pigeon Creek 415-11 455-16 Impaired 40 3 fair B Williams Creek 415-11 455-16 455-16 455-17 455-16 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17</td></td>	Pigeon Creek 41b-11 45b Impaired 40 3 fair B Williams Creek 41b-11 45a Reference 40 3 fair B Williams Creek 45b-16 45b Reference 40 3 fair B Unition Screek 45b-10 45b Impaired 39 3 fair B Creek 45b-116 45b Impaired 39 3 fair B Upion Creek 45b-116 45c Impaired 39 3 fair B Midia Fork Broad 45b-116 45c Impaired 35 3 fair B Midia Fork Broad 45b-13 45b Impaired 35 3 fair B Midia Fork Broad 45b-13 45b Impaired 35 3 fair B Mode Fork Broad 45b-13 45b Impaired 35 3 fair B River	Pigeon Creek 43h-11 45h Impaired 40 3 fair B Winkoping Creek 45h-11 45a Reference 40 3 fair B Winkoping Creek 45h-10 45b Reference 40 3 fair B Utitle Barvidam 45b-10 45b Impaired 39 3 fair B Utitle Barvidam 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Middle Fork Broad 45c-17 45c Impaired 35 3 fair B Middle Fork Broad 45c-16 45b Impaired 35 3 fair B Middle Fork Broad 45b-31 45b Impaired 35 3 fair B Middle Fork Broad 45b-31 45b Impaired 35 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Uption Creek 455-17 45c Impaired 39 3 fair B Middle Fork Broad 455-17 45c Impaired 37 3 fair B Middle Fork Broad 455-16 Impaired 35 3 fair B Middle Fork Broad 455-16 Reference 35 3 fair B Duble Branch 455-13 456 Impaired 34 3 fair B Candicr Creek 455-16 <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45a Reference 40 3 fair B Williams Creek 45h-10 45h Reference 40 3 fair B Unition Screek 45h-10 45b Impaired 39 3 fair B Creene Creek 45b-17 45c Impaired 39 3 fair B Orison Creek 45b-116 45b Impaired 39 3 fair B Midel Fork Broad 45b-116 45b Impaired 36 3 fair B Midel Fork Broad 45b-16 Impaired 36 3 fair B Midel Fork Broad 45b-13 45b Impaired 35 3 fair B Model Fork Broad 45b-13 45b Impaired 35 3 fair B Dubio Branch</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Willams Creek 45h-11 45a Reference 40 3 fair B Willams Creek 45h-10 455 Reference 40 3 fair B Unitians Creek 45h-10 45b Impaired 39 3 fair B Usion Creek 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Uption Creek 45c-16 45b Impaired 39 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Duuble Branch 45b-16 Impaired 34 3 fair B Creeteck 45b-3 Reference 34<</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Unton Creek 45h-10 45b Impaired 39 3 fair B Greene Creek 455-17 45c Impaired 39 3 fair B Uption Creek 455-13 456 Impaired 39 3 fair B Midel Fork Broad 455-13 456 Impaired 37 3 fair B Midel Fork Broad 455-16 Impaired 35 3 fair B Midel Fork Broad 455-13 456 Impaired 35 3 fair B Midel Fork Broad 455-14 456 Impaired 35 3 fair B Double Branch</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 455 Reference 40 3 fair B Williams Creek 45h-10 455 Reference 40 3 fair B Untooping Creek 45h-10 45b Impaired 39 3 fair B Creene Creek 45c-17 45c Impaired 39 3 fair B Williams Creek 45c-17 45c Impaired 39 3 fair B Orean Creek 45c-17 45c Impaired 36 3 fair B Mide For KB road 45c-17 45c Impaired 37 3 fair B Mide For KB road 45c-13 45b Impaired 36 3 fair B Mide For KB road 45c-13 45b Impaired 34 3 fair B</td> <td>Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 35 3 fair B Uptor Creek 455-13 45b Impaired 35 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Candid Creek</td> <td>Pigeon Creek 415-11 455-16 Impaired 40 3 fair B Williams Creek 415-11 455-16 455-16 455-17 455-16 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17</td>	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45a Reference 40 3 fair B Williams Creek 45h-10 45h Reference 40 3 fair B Unition Screek 45h-10 45b Impaired 39 3 fair B Creene Creek 45b-17 45c Impaired 39 3 fair B Orison Creek 45b-116 45b Impaired 39 3 fair B Midel Fork Broad 45b-116 45b Impaired 36 3 fair B Midel Fork Broad 45b-16 Impaired 36 3 fair B Midel Fork Broad 45b-13 45b Impaired 35 3 fair B Model Fork Broad 45b-13 45b Impaired 35 3 fair B Dubio Branch	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Willams Creek 45h-11 45a Reference 40 3 fair B Willams Creek 45h-10 455 Reference 40 3 fair B Unitians Creek 45h-10 45b Impaired 39 3 fair B Usion Creek 45b-116 45b Impaired 39 3 fair B Uption Creek 45c-17 45c Impaired 39 3 fair B Uption Creek 45c-16 45b Impaired 39 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Uption Creek 45b-16 Impaired 35 3 fair B Duuble Branch 45b-16 Impaired 34 3 fair B Creeteck 45b-3 Reference 34<	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Unton Creek 45h-10 45b Impaired 39 3 fair B Greene Creek 455-17 45c Impaired 39 3 fair B Uption Creek 455-13 456 Impaired 39 3 fair B Midel Fork Broad 455-13 456 Impaired 37 3 fair B Midel Fork Broad 455-16 Impaired 35 3 fair B Midel Fork Broad 455-13 456 Impaired 35 3 fair B Midel Fork Broad 455-14 456 Impaired 35 3 fair B Double Branch	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-11 455 Reference 40 3 fair B Williams Creek 45h-10 455 Reference 40 3 fair B Untooping Creek 45h-10 45b Impaired 39 3 fair B Creene Creek 45c-17 45c Impaired 39 3 fair B Williams Creek 45c-17 45c Impaired 39 3 fair B Orean Creek 45c-17 45c Impaired 36 3 fair B Mide For KB road 45c-17 45c Impaired 37 3 fair B Mide For KB road 45c-13 45b Impaired 36 3 fair B Mide For KB road 45c-13 45b Impaired 34 3 fair B	Pigeon Creek 45h-11 45h Impaired 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Williams Creek 45h-16 45h Reference 40 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 39 3 fair B Uptor Creek 455-17 45c Impaired 35 3 fair B Uptor Creek 455-13 45b Impaired 35 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Double Branch 455-3 45b Impaired 34 3 fair B Candid Creek	Pigeon Creek 415-11 455-16 Impaired 40 3 fair B Williams Creek 415-11 455-16 455-16 455-17 455-16 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17 455-17

Table 5. Stream Rating for Ecoregion 45 (cont.).

ပ

poor

4

53

Impaired

45b

45b-212

Sugar Creek

Table 5. Stream Rating for Ecoregion 45 (cont.).

U	U	U	o	U	o	U	J	U	ပ
poor	poor	poor	poor	poor	poor	very poor	very poor	very poor	very poor
4	4	4	4	4	4	5	ß	ß	5
23	22	20	19	17	12	11	ø	5	4
Impaired	Impaired	Ref/Removed	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired
45b	45a	45c	45h	45a	45b	45a	45a	45b	45b
45b-203	45a-61	45c-18	45h-10	45a-55	45b-202	45a-50	45a-59	45b-217	45b-291
South Fork	Olley Creek	Trib to Rocky Creek	Coleachee Creek	Sope Creek	North Fork	Noonday Creek	Rottenwood Creek	Flint River	Proctor Creek

Figure 6. 45a – Southern Inner Piedmont.

Figure 7. Typical Reference Stream - Subecoregion 45a.

Figure 8. Typical Impaired Stream –Subecoregion 45a.

Table 6. Index 45a.

Metric	Metric Catergory					
Plecoptera Taxa	Richness					
% Tricoptera	Composition					
% Chironomus Cricotopus/TC	Composition					
Tolerant Taxa	Tolerance					
% Scraper	Functional Feeding Group					
Clinger Taxa	Habitat					

Table 7. Descriptive Statistics for Réference Streams in Subecoregion 45a. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				P				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Plecoptera								
Taxa	.50	1.0	1.0	2.0	3.0	4.0	5.6	6.0
% Tricoptera	.75	4.0	6.0	13.8	14.8	18.8	31.8	35.0
%								
Chironomus								
Cricotopus/TC	1.0	0	0	0	0	0	0	0
Tolerant Taxa	1.0	7.0	7.0	7.0	7.0	8.0	10.4	11.0
% Scraper	.75	3.0	5.0	11.8	15.3	31.8	39.9	42.0
Clinger Taxa	.88	9.0	10.0	14.0	15.0	19.0	19.8	20.0

Figure 9. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 45a.

Table 8. Description of Numeric Ranking for Subecoregion 45a. n=all reference and impaired sites in subecoregion 45a.

Index Score	Numeric Ranking	Percentile n= 13
75 and above	1	Above 95 th
71-74	2	Below 95 th , Above 75th
43-70	3	Below 75 th , Above 25th
19-42	4	Below 25 th , Above 5th
19 and below	5	Below 5 th

Stream	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Town Creek	Reference	78	1	very good	A
Davidson Creek	Reference	73	2	good	A
Middle Fork Broad					A
River	Reference	72	2	good	
Hillabahatchee Creek	Reference	71	2	good	A
Whooping Creek	Reference	65	3	fair	B
Pond Fork	Impaired	62	3	fair	B
Smithwick Creek	Impaired	59	3	fair	B
Mountain Creek	Impaired	56	3	fair	В
Candler Creek	Impaired	53	3	fair	B
Sope Creek	Impaired	43	3	fair	В
Noonday Creek	Impaired	33	4	poor	С
Rottenwood Creek	Impaired	24	4	poor	С
Olley Creek	Impaired	12	5	very poor	С

Table 9. Stream Rating for Subecoregion 45a.

Figure 10. 45b – Southern Outer Piedmont.

Figure 11. Typical Reference Stream – Subecoregion 45b.

Figure 12. Typical Impaired Stream - Subecoregion 45b.

Table 10. Index 45b.

Metric	Metric Category
Coleoptera Taxa	Richness
% Oligochaeta	Composition
% Plecoptera	Composition
Shredder Taxa	Eurotional Ecoding Group
Scraper Taxa	Functional Feeding Gloup
Swimmer Taxa	Habitat

Table 11. Descriptive Statististics for Reference Streams in Subecoregion 45b. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n=5					
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Coleoptera								
Taxa	0.9	5.0	5.2	6.0	6.0	8.0	8.8	9.0
%								
Oligochaeta	0.8	0.0	0.0	0.0	0.8	1.2	2.9	3.0
%								
Plecoptera	0.8	1.0	2.0	4.6	10.8	12.9	16.2	17.0
Shredder								
Taxa	0.9	4.0	4.4	6.0	6.0	7.0	11.0	12.0
Scraper								
Taxa	0.9	2.0	2.4	4.0	6.0	8.0	8.8	9.0
Swimmer								
Taxa	0.9	1.0	1.4	3.0	3.0	3.0	3.8	4.0

Figure 13. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 45b.

Table 12. Description of Numeric Ranking for Subecoregion 45b. n=all reference and impaired sites in subecoregion 45b.

Index Score	Numeric Ranking	Percentile n= 22
84 and above	1	Above 95 th
56-83	2	Below 95 th , Above 75th
32-55	3	Below 75 th , Above 25th
17-31	4	Below 25 th , Above 5th
16 and below	5	Below 5 th

Table 13. Stream Rating for Subecoregion 45b.

		Index	Numeric	Narrative	Stream
Stream	Condition	Score	Ranking	Description	Rating
Rocky Creek	Reference	93	1	very good	A
Murder Creek	Reference	85	1	very good	A
Beaverdam Creek	Impaired	63	2	good	A
Copeland Creek	Reference	62	2	good	A
Trib to Flint River	Reference	62	2	good	A
Little Falling Creek	Reference	58	2	good	A
Indian Creek	Impaired	53	3	fair	В
Trib to North Oconee River	Impaired	51	3	fair	В
Little Sandy Creek	Impaired	46	3	fair	В
Little Beaverdam Creek	Impaired	43	3	fair	В
Little Coldwater Creek	Impaired	39	3	fair	В
Shoal Creek	Impaired	38	3	fair	В
Proctor Creek	Impaired	35	3	fair	В
Double Branch	Impaired	34	3	fair	В
Big Sandy Creek	Impaired	34	3	fair	В
Trib toYellow River	Impaired	31	4	poor	С
Snapfinger Creek	Impaired	31	4	poor	С
South Fork	Impaired	30	4	poor	С
North Fork	Impaired	23	4	poor	С
Flint River	Impaired	20	4	poor	Ċ
South River	Impaired	16	5	very poor	C
Sugar Creek	Impaired	7	5	very poor	С

Figure 14. 45c - Carolina Slate Belt.

Figure 15. Typical Reference Stream – Subecoregion 45c.

Figure 16. Typical Impaired Stream – Subecoregion 45c.

Table 14. Index 45c.

Metric	Metric Category	
Tanytarsini Taxa	Richness	
% Odonata	Composition	
% Tanypodinae/ Total Chironomidae	Composition	
Dominant Individual	Telerence	
% Intolerant Individuals	TOIETATICE	
% Shredder	Functional Feeding Group	
Swimmer Taxa	Habitat	

Table 15. Descriptive Statistics for Reference Streams in Subecoregion 45c. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n=4					
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Tanytarsini								
Таха	0.6	0.0	0.5	2.3	4.0	5.5	6.7	7.0
% Odonata	0.6	0.0	0.4	0.5	1.0	1.5	1.7	2.0
%								
Tanypodinae/								
TC	0.6	4.0	4.0	5.0	6.7	8.8	10.9	11.0
Dominant								
Individual	0.6	35.0	35.5	37.3	46.0	55.3	58.3	59.0
% Intolerant								
Individuals	0.8	3.0	7.2	22.6	31.2	33.5	33.5	34.0
% Shredder	1.0	1.0	2.3	6.5	16.3	25.7	28.7	29.0
Swimmer								
Taxa	0.4	2.0	2.2	2.8	3.5	4.0	4.0	4.0

35

Figure 17. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 45c.

Table 16. Description of Numeric Ranking for Subecoregion 45c. n=all reference and impaired sites in subecoregion 45c.

Index Score	Numeric Ranking	Percentile n = 10
88 and above	1	Above 95th
79-87	2	Below 95 th , Above 75th
49-78	3	Below 75 th , Above 25th
25-48	4	Below 25 th , Above 5th
24 and below	5	Below 5th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Kemp Creek	45c-16	Reference	90	1	very good	A
Dry Fork	45c-8	Reference	85	1	very good	A
Bull Creek	45c-19	Reference	79	2	good	A
Centerville Branch	45c-7	Impaired	77	3	fair	В
Trib to Rocky Creek	45c-18	Ref/Removed	55	3	fair	В
Chickasaw Creek	45c-3	Impaired	50	3	fair	В
Florence Creek	//4	Reference	49	3	fair	В
Dry Fork Creek	45c-11	Impaired	48	4	poor	C
Upton Creek	45c-17	Impaired	26	4	poor	С
Cherokee Creek	45c-10	Impaired	23	5	very poor	С

Table 17. Stream Rating for Subecoregion 45c.

Figure 18. 45d - Talladega Upland.

Figure 19. Typical Reference Stream Subecoregion 45d.

Figure 20. Typical Impaired Stream – Subecoregion 45d.

Table 18. Index 45d.

Metric	Metric Category	
Coleoptera Taxa	Richness	
% Tanypodinae/ Total Chironomidae	Composition	
% Odonata	Composition	
North Carolina Biotic Index (NCBI)	Teleranee	
% Tolerant Individuals	Tolerance	
Shredder Taxa	Functional Feeding Group	

Table 19. Descriptive Statistics for Reference Streams in Subecoregion 45d. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n=4					
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Coleoptera								
Taxa	0.8	2.0	2.9	6.5	8.0	8.3	8.9	9.0
%								
Tanypodinae/								
TC	1.0	1.5	1.6	2.0	2.3	5.4	12.5	14.3
% Odonata	0.8	0.0	0.2	1.1	1.5	1.8	2.7	2.9
NCBI	1.0	2.1	2.3	3.4	3.9	4.1	4.5	4.6
% Tolerant								
Individuals	1.0	6.2	6.4	7.2	8.0	8.5	8.6	8.6
Shredder								
Таха	0.4	6.0	6.0	6.0	6.0	6.8	8.6	9.0

Figure 21. Discriminating Index Characterization between Reference and Impaired Streams for Subecoregion 45d.

39

Table 20. Description of Numeric Ranking for Subecoregion 45d. n=all reference and impaired sites in subecoregion 45d.

Index Score	Numeric Ranking	Percentile n = 9
82 and above	1	Above 95 th
78-81	2	Below 95 th , Above 75th
44-77	3	Below 75 th , Above 25th
38-43	4	Below 25 th , Above 5th
37 and below	5	Below 5th

Table 21. Stream Rating for Subecoregion 45d.

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Terrapin						
Creek	450-9	Reference	82	1	very good	A
Wallace						1
Creek	45d-16	Reference	81	2	good	A
West Fork						
Pumpkinvine						
Creek	45d-15	Reference	81	2	good	A
Simpson						
Creek	45d-4	Reference	70	3	fair	В
Swinney						
Branch	45d-21	Impaired	50	3	fair	В
Big Creek	45d-14	Impaired	47	3	fair	В
Mann Creek	45d-8	Ref/Removed	45	3	fair	В
Greene						
Creek	45d-6	Impaired	44	3	fair	В
Pegamore						
Čreek	45d-11	Impaired	40	4	poor	С
Thompson						
Creek	45d-23	Impaired	35	5	very poor	С

Figure 22. Subecoregion 45h - Pine Mountain Ridges.

Figure 23. Typical Reference Stream - Subecoregion 45h.

Figure 24. Typical Impaired Stream – Subecoregion 45h.

Table 22. Index 45h.

Metric	Metric Category
Plecoptera Taxa	Richness
% Ephemeroptera	Composition
% Plecoptera	Composition
% Intolerant Individuals	Tolerance
% Scraper	Functional Feeding Group
% Clinger	Habitat

Table 23. Descriptive Statistics for Reference Streams in Subecoregion 45h. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Р	ercenti n = 5	le		
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Plecoptera								
Таха	1.0	2.0	2.4	4.0	4.0	6.0	6.8	7.0
%								
Ephemeroptera	0.8	9.0	9.4	10.8	12.1	13.8	16.3	17.0
% Plecoptera	0.8	3.0	3.1	5.6	5.8	13.3	13.9	14.0
% Intolerant								
Individual	0.8	17.0	17.5	20.0	20.8	25.4	40.3	44.1
% Scraper	0.6	4.0	4.8	7.3	8.8	12.5	15.5	16.3
% Clinger	0.6	28.7	29.8	34.6	50.0	55.0	59.8	61.0

Figure 25. Discriminating Index Characteristic between Reference and Impaired Streams for 45h.

43

Table 24. Description of Numeric Ranking for Subecoregion 45h. n=all reference and impaired sites in subecoregion 45h.

Index Score	Numeric Ranking	Percentile n = 10
77 and above	1	Above 95th
67-76	2	Below 95 th , Above 75th
41-66	3	Below 75 th , Above 25th
21-40	4	Below 25 th , Above 5th
20 and below	5	Below 5th

Table 25. Stream Rating for Subecoregion 45h.

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Sparks Creek	45h-13	Reference	79	1	very good	A
Mud Creek	45h-9	Reference	73	2	good	A
Williams Creek	45h-16	Reference	67	2	good	A
Three Mile Creek	45h-1	Impaired	65	3	fair	в
Barnes Creek	45h-17	Reference	62	3	fair	В
Turkey Creek	45h-6	Reference	54	3	fair	В
Lazar Creek	45h-12	Impaired	50	3	fair	В
Pigeon Creek	45h-11	Impaired	38	4	poor	С
Coleachee Creek	45h-10	Impaired	21	4	poor	с
Powder Creek	45h-2	Impaired	20	5	very poor	С

Table 26. Index 65.

Metric	Metric Category
% Coleoptera	Composition
% Oligochaeta	Composition
Intolerant Taxa	Toloropoo
% Intolerant Individuals	Tolerance
% Predator	Functional Feeding Group
% Clinger	Habitat

Table 27. Descriptive Statistics for Reference Streams in Ecoregion 65. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				P	ercenti n = 32	ile		
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
% Coleoptera	0.5	0.0	0.2	2.0	4.6	9.8	17.8	36.4
%								
Oligochaeta	0.6	0.0	0.0	0.0	1.4	2.9	10.4	11.7
Intolerant								
Taxa	0.5	0.0	0.0	2.0	3.5	6.0	9.9	12.0
% Intolerant								
Individuals	0.6	0.0	0.0	2.5	6.4	13.6	36.23	46.7
% Predator	0.5	1.5	3.1	7.5	11.8	19.3	38.5	48.8
% Clinger	0.5	0.0	2.5	8.1	18.8	27.6	47.8	63.3

Figure 27. Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 65.

46

Table 28. Description of Numeric Ranking for Ecoregion 65. n=all reference and impaired sites in ecoregion 65.

Index Score	Numeric Ranking	Percentile n= 103
63 and above	1	Above 95th
49-62	2	Below 95 th , Above 75th
23-48	3	Below 75 th , Above 25th
16-22	4	Below 25 th , Above 5th
15 and below	5	Below 5th

Stream Rating	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	8	в	œ
Narrative	very good	very good	very good	very good	very good	poob	poob	poob	poob	good	good	good	boog	good	good	poob	poog	good	good	good	good	good	poob	good	good	fair	fair	fair
Numeric Ranking	1	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	e	Э	e
Index Score	73	72	71	65	64	62	62	62	60	59	58	58	56	56	55	55	54	53	53	53	52	52	51	51	50	48	48	47
Condition	Reference	Impaired	Reference	Impaired	Reference	Impaired	Reference	Impaired	Impaired	Reference	Reference	Reference	Reference	Reference	Reference	Impaired	Impaired	Reference	Reference	Reference	Impaired	Ref/Removed	Impaired	Reference	Impaired	Impaired	Reference	Impaired
Subecoregion	650	65c	65d	65c	65k	65d	65h	651	65k	659	65h	65c	650	65d	65c	650	65c	65c	65h	65d	65d	65g	65d	65c	65h	65h	650	65d
StationID	HH25	65c-40	65d-14	65c-12	65k-55	65d-39	65h-212	651-146	65k-127	HH29	65h-206	HH26	650-23	65d-18	HH24	650-3	65c-8	65c-89	65h-202	65d-4	65d-21	65g-83	65d-17	65c-80	65h-174	65h-37	650-24	65d-20
Stream	Pine Knot Creek	Deep Creek	Hannahatchee Creek	Magtail Branch	Cedar Creek	Roaring Branch	South Mosquito Creek	Bay Branch	Bear Creek	Coheelee Creek	Shaw Creek	Shoal Creek	Clyatt Mill Creek	Grass Creek	Whitewater Creek	Olive Creek	Sweetwater Creek	Hollis Creek	Callahan Branch	Sally Branch	Clear Creek	Trib Chickasawhatchee Creek	Talipahoga Rum Creek	Lanahassee Creek	Sugar Creek	Sand Creek	Redland Creek	Dav Creek

	_																				_					_			_
8	æ	æ	ш	æ	æ	۵	æ	۵	æ	m	۵	æ	۵	а	æ	ш	æ	æ	æ	۵	в	۵	æ	ш	в	ш	в	в	æ
fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair
6	e	e	e	e	e	e	9	9	е	e	e	e	e	e	e	e	e	e	e	e	3	e	e	e	3	е	e	e	e
47	47	46	46	46	45	45	44	43	43	42	41	40	40	40	40	38	38	36	36	36	35	35	34	34	34	32	32	32	32
Reference	Reference	Impaired	Impaired	Impaired	Impaired	Reference	Reference	Reference	Reference	Reference	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Reference	Reference	Impaired	Impaired	Impaired	Reference	Reference	Impaired	Impaired	Impaired
651	65h	65k	65k	65k	65h	650	65d	65k	65k	65d	65c	65c	65h	65k	65k	65g	65c	65d	659	651	650	650	65k	651	65k	65g	65c	65c	651
651-10	65h-203	65k-115	65k-102	65k-100	65h-14	650-12	65d-3	65k-54	65k-56	65d-38	65c-5	65c-3	65h-41	65k-129	65k-128	65g-69	65c-88	65d-32	65g-17	651-381	650-25	650-18	65k-37	651-234	65k-68	65g-120	65c-38	65c-4	65L-184
Mill Creek	Fourmile Creek	Angelica Creek	Horsehead Creek	Spring Hill Creek	Wolf Creek	Hadley Creek	Hollaca Creek	Maiden Creek	Porter Creek	Waukeefriskee Creek	Butler Creek	Rae's Creek	Warrior Creek	Trib to Kinchafoonee Creek	Long Branch	Trib to Flint River	Hitchitee Creek	Drag Nasty Creek	Gully Creek	Little Sturgeon Creek	Trib to New River	Alagood Creek	Big Cedar Creek	Camp Creek	Crooked Creek	Odom Creek	Gum Branch	Rocky Creek	Stitchihatchie Creek

Table 29. Stream Rating for Ecoregion 65 (cont.).

٦

-			-	-			-	_	-	-		-	-	-	-		-	-				_							
в	в	в	в	в	в	в	в	æ	в	в	в	в	в	в	ш	ш	ш	υ	U	υ	υ	υ	U	υ	υ	υ	o		U
fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	poor	poor	poor	poor	poor	poor	poor	poor	poor		poor	poor
6	e	3	e	e	e	9	е		e	e	e	en	e	e	e	e	e	4	4	4	4	4	4	4	4	4		4	4
32	32	31	30	30	29	28	28	28	27	26	25	25	25	25	23	23	23	22	22	21	21	20	19	19	19	19		18	18
Reference	Impaired	Impaired	Impaired	Impaired	Impaired	Reference	Impaired	Impaired	Impaired	Impaired	Impaired	Reference	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired	Reference	Impaired	Impaired	Impaired		Impaired	Impaired
65h	65c	65c	650	65h	65h	651	650	651	651	65k	65d	651	65d	65k	65g	65k	65h	65g	651	651	65k	659	651	651	651	651		651	65h
65h-209	65c-92	65c-48	650-22	65h-24	65h-17	651-342	650-11	651-160	651-420	65k-113	65d-1	651-343	65d-22	65k-18	65g-130	65k-110	65h-1	65g-10	651-423	651-281	65k-99	65g-14	651-379	651-391	651-280	651-235		651-283	65h-4
Trib to Willacoochee Creek	Clear Creek	Beaver Creek	Trib to Withlacoochee	Hat Creek	Trib to West Fork Deep Creek	Opposum Creek	Pine Creek	Trib to Canochee River	Mill Branch	Town Creek	Weracoba Creek	Fishing Creek	Pataula Creek	McQuaddy Branch	Trib to Dry Creek	Parker's Mill Creek	Trib to Alapaha River	Trib to Gum Creek	Vicker's Stream	Trib to Sandy Mount	Trib to Big Indian Creek	Trib to Gum Creek	Red Bluff Creek	Little Sturgeon Creek	Pennahatchee Creek	Little Creek	Trib to Little Pennehatchee	Creek	Deep Creek

Table 29. Stream Rating for Ecoregion 65 (cont.).

υ	υ	υ	υ	υ	ပ	υ	υ	υ	υ	υ	ပ	ပ	υ	ပ
poor	poor	poor	poor	poor	poor	poor	poor	very poor	very poor	very poor	very poor	very poor	very poor	very poor
4	4	4	4	4	4	4	4	5	5	5	5	5	5	5
18	17	17	16	16	16	16	16	15	15	15	14	12	11	8
Impaired	Impaired	Impaired	Reference	Impaired	Impaired	Impaired	Impaired	Ref/Removed	Impaired	Impaired	Impaired	Impaired	Impaired	Impaired
651	659	659	65k	65h	65h	65h	659	659	651	659	65h	651	659	650
651-390	65g-135	65g-137	65k-85	65h-34	65h-13	65h-5	65g-4	65g-82	651-403	659-8	65h-32	651-277	659-84	650-9
Brushy Creek	Fish Pond Drain	Trib to Fish Pond Drain	Okeetuck Creek	Lime Sink Creek	Snapfinger Creek	Red Oak Creek	Little Creek	Keel Creek	Reedy Creek	Lilly River	Daniels Creek	Wildcat Creek	Trib to Pachitla Creek	Connell Creek

Table 29. Stream Rating for Ecoregion 65 (cont.).

Figure 29. Typical Reference Stream – Subecoregion 65c.

Figure 30. Typical Impaired Stream - Subecoregion 65c.

Table 30. Index 65c.

Metric	Metric Category
% Tricoptera	Compostion
Tolerant Taxa	Telerance
Intolerant Taxa	Tolerance
% Scraper	Functional Feeding Group
Clinger Taxa	Habitat

Table 31. Descriptive Statistics for Reference Streams in Subecoregion 65c. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile					
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
%								
Tricoptera	0.7	4.3	4.5	5.1	8.8	13.7	23.8	26.3
Tolerant								
Taxa	0.8	3.0	3.8	7.0	10.0	11.0	11.8	12.0
Intolerant								
Taxa	0.8	3.0	3.4	5.0	5.0	9.0	10.6	11.0
% Scraper	0.9	4.0	5.0	10.8	11.3	23.6	27.1	28.0
Clinger								
Taxa	0.6	10.0	10.2	11.0	12.0	15.0	16.6	17.0

Figure 31. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65c.

Table 32. Description of Numeric Ranking for Subecoregion 65c. n=all reference and impaired sites in subecoregion 65c.

Index Score	Numeric Ranking	Percentile n = 15
73 and above	1	Above 95th
61-72	2	Below 95 th , Above 75th
30-60	3	Below 75 th , Above 25th
20-29	4	Below 25 th , Above 5th
19 and below	5	Below 5th

Streams	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Pine Knot Creek	HH25	Reference	92	1	very good	A
Whitewater Creek	HH24	Reference	65	2	good	A
Deep Creek	65c-40	Impaired	63	2	good	A
Rae's Creek	65c-3	Impaired	62	2	good	A
Lanahassee Creek	65c-80	Reference	59	3	fair	В
Hollis Creek	65c-89	Reference	58	3	fair	B
Sweetwater Creek	65c-8	Impaired	55	3	fair	В
Magtail Branch	65c-12	Impaired	52	3	fair	В
Shoal Creek	HH26	Reference	47	3	fair	В
Hitchitee Creek	65c-88	Impaired	35	3	fair	В
Butler Creek	65c-5	Impaired	34	3	fair	В
Gum Branch	65c-38	Impaired	26	4	poor	С
Clear Creek	65c-92	Impaired	25	4	poor	С
Beaver Creek	65c-48	Impaired	24	4	poor	C
Rocky Creek	65c-4	Impaired	11	5	very poor	С

Table 33. Stream Rating for Subecoregion 65c.

Figure 32. 65d - Southern Hilly Gulf Coastal Plain.

Figure 33. Typical Reference Stream – Subecoregion 65d.

Figure 34. Typical Impaired Stream - Subecoregion 65d.

Table 34. Index 65d.

Metric	Metric Category			
Plecoptera Taxa	Richness			
% Chironomidae	Composition			
% Hydropsychidae/ EPT	Composition			
% Filterer	Functional Feeding Group			
Swimmer Taxa	Habitat			

Table 35. Descriptive Statistics for Reference Streams in Subecoregion 65d. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n = 5					
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Plecoptera Taxa	0.7	0.0	0.6	3.0	3.0	3.0	5.4	6.0
% Chironomidae	0.7	34.1	36.0	43.8	45.2	53.3	67.3	70.8
%								
Hydropsychidae/								
EPT	0.6	0.0	0.9	4.4	8.7	9.1	15.0	16.5
% Filterer	0.7	0.4	1.3	4.7	5.4	7.9	8.2	8.3
Swimmer Taxa	0.6	1.0	1.0	1.0	2.0	2.0	2.8	3.0

Figure 35. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65d.

Table 36. Description of Numeric Ranking for Subecoregion 65d. n=all reference and impaired sites in subecoregion 65d.

Index Score	Numeric Ranking	Percentile n= 12
81 and above	1	Above 95th
68-80	2	Below 95 th , Above 75th
45-67	3	Below 75 th , Above 25th
27-44	4	Below 25 th , Above 5th
26 and below	5	Below 5th

			Index	Numeric	Narrative	Stream
Stream	StationID	Condition	Score	Ranking	Description	Rating
Hannahatchee		1				
Creek	65d-14	Reference	88	1	very good	A
Sally Branch	65d-4	Reference	74	2	good	A
Hollaca Creek	65d-3	Reference	71	2	good	A
Grass Creek	65d-18	Reference	66	3	fair	В
Clear Creek	65d-21	Impaired	65	3	fair	В
Waukeefriskee						
Creek	65d-38	Reference	65	3	fair	В
Roaring Branch	65d-39	Impaired	63	3	fair	В
Day Creek	65d-20	Impaired	50	3	fair	В
Drag Nasty Creek	65d-32	Impaired	45	3	fair	В
Talipahoga Rum						
Creek	65d-17	Impaired	40	4	poor	С
Pataula Creek	65d-22	Impaired	31	4	poor	С
Weracoba Creek	65d-1	Impaired	19	5	very poor	С

Table 37. Stream Rating for Subecoregion 65d.

Figure 36. 65g - Dougherty Plain.

Figure 37. Typical Reference Stream – Subecoregion 65g.

Figure 38. Typical Impaired Stream – Subecoregion 65g.

Table 38. Index 65g.

Metric	Metric Category
EPT Taxa	Richness
% Oligochaeta	Composition
% Intolerant Individuals	Composition
HBI	Eurotional Fooding Croup
Filterer Taxa	Functional Feeding Group
Clinger Taxa	Habitat

Table 39. Descriptive Statistics for Reference Streams in Subecoregion 65g. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n = 3					_
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
EPT Taxa	1.0	7.0	7.0	7.0	7.0	11.5	15.1	16.0
%								
Oligochaeta	1.0	1.4	1.5	2.0	2.5	2.7	2.9	2.9
% Intolerant								
Individuals	1.0	3.0	3.0	3.0	3.0	5.0	6.6	7.0
HBI	1.0	4.9	5.0	5.2	5.5	5.7	5.9	6.0
Filterer								
Taxa	0.8	3.0	3.1	3.5	4.0	5.5	6.7	7.0
Clinger								
Taxa	1.0	6.0	6.2	7.0	8.0	9.0	9.8	10.0

Figure 39. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65g.

61

Table 40. Description of Numeric Ranking for Subecoregion 65g. n=all reference and impaired sites in Subecoregion 65g.

Index Score	Numeric Ranking	Percentile n = 15
76 and above	1	Above 95th
48-75	2	Below 95 th , Above 75th
24-47	3	Below 75 th , Above 25th
14-23	4	Below 25 th , Above 5th
13 and below	5	Below 5th

Table 41. Stream Rating for Subecoregion 65g.

			Index	Numeric	Narrative	Stream
Stream	StationID	Condition	Score	Ranking	Description	Rating
Coheelee Creek	HH29	Reference	80	1	very good	А
Odom Creek	65g-120	Reference	74	2	good	A
Kiokee Creek	65g-62	Reference	74	2	good	A
Trib Chickasawhatchee Creek	650-83	Ref/Removed	60	2	hoon	А
Trib to Flint River	65g-69	Impaired	36	3	fair	B
Trib to Dry Creek	65g-130	Impaired	33	3	fair	B
Gully Creek	65g-17	Impaired	30	3	fair	В
Keel Creek	65g-82	Ref/Removed	30	3	fair	В
Trib to Fish Pond Drain	65g-137	Impaired	28	3	fair	в
Trib to Gum Creek	65g-10	Impaired	27	3	fair	В
Little Creek	65g-4	Impaired	24	3	fair	В
Lilly River	65g-8	Impaired	24	3	fair	В
Fish Pond Drain	65g-135	Impaired	17	4	poor	С
Trib to Gum Creek	65g-14	Impaired	15	4	poor	С
Trib to Pachitla Creek	65g-84	Impaired	12	5	very poor	С

Figure 40. 65h - Tifton Upland.

Figure 41. Typical Reference Stream – Subecoregion 65h.

Figure 42. Typical Impaired Stream – Subecoregion 65h.

Table 42. Index 65h.

Metric	Metric Category
Tanytarsini Taxa	Pichpocs
Shannon-Wiener base e	Richness
% Oligochaeta	Composition
% Tanytarsini	Composition
NCBI	Tolerance
% Predator	Functional Feeding Group
Clinger Taxa	Habitat

Table 43. Descriptive Statistics for Reference Streams in Subecoregion 65h. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Tanytarsini					C			
Taxa	0.8	2.0	2.6	5.0	5.0	8.0	11.2	12.0
Shannon-								
Wiener								
base e	0.7	2.6	2.7	2.8	3.0	3.0	3.3	3.4
%								
Oligochaeta	0.9	4.9	4.9	5.1	5.7	6.7	7.2	7.3
%								
Tanytarsini	1.0	8.2	9.3	13.6	15.4	38.3	42.9	44.1
NCBI	0.8	4.9	4.9	5.1	5.7	6.7	7.2	7.3
% Predator	0.6	7.9	8.1	9.0	13.2	14.1	22.7	24.9
Clinger								
Taxa	0.9	4.0	4.4	6.0	7.0	10.0	11.6	12.0

65

Figure 43. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65h.

Table 44. Description of Numeric Ranking for Subecoregion 65h. n=all reference and impaired sites in subecoregion 65h.

Index Score	Numeric Ranking	Percentile n = 17
79 and above	1	Above 95th
59-78	2	Below 95 th , Above 75th
26-58	3	Below 75 th , Above 25th
19-25	4	Below 25 th , Above 5th
18 and below	5	Below 5th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Fourmile Creek	65h-203	Reference	80	1	very good	A
South Mosquito Creek	65h-212	Reference	78	2	good	A
Sugar Creek	65h-174	Impaired	73	2	good	A
Callahan Branch	65h-202	Reference	62	2	good	A
Trib to Willacoochee Creek	65h-209	Reference	58	3	fair	В
Shaw Creek	65h-206	Reference	58	3	fair	В
Sand Creek	65h-37	Impaired	52	3	fair	В
Hat Creek	65h-24	Impaired	49	3	fair	В
Wolf Creek	65h-14	Impaired	44	3	fair	В
Warrior Creek	65h-41	Impaired	44	3	fair	В
Trib to West Fork Deep Creek	65h-17	Impaired	34	3	fair	в
Deep Creek	65h-4	Impaired	28	3	fair	В
Trib to Alapaha River	65h-1	Impaired	26	3	fair	В
Snapfinger Creek	65h-13	Impaired	24	4	poor	С
Red Oak Creek	65h-5	Impaired	23	4	poor	С
Daniels Creek	65h-32	Impaired	19	4	poor	С
Lime Sink Creek	65h-34	Impaired	17	5	very poor	С

Table 45. Stream Rating for Subecoregion 65h.

Figure 44. 65k Coastal Plain Red Uplands.

Figure 45. Typical Reference Stream – Subecoregion 65k.

Figure 46. Typical Impaired Stream - Subecoregion 65k.

Table 46. Index 65k.

Metric	Metric Category
% Gastropoda	
% Orthocladiinae/Total	
Chironomidae	Composition
% Coleoptera	Composition
% Hydropsychidae/Total	
Trichoptera	
% Filterer	Eurotional Ecoding Group
% Collector	Functional Feeding Gloup

Table 47. Descriptive Statistics for Reference Streams in Subecoregion 65k. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n = 5					
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
% Gastropoda	0.8	1.0	1.0	1.2	1.7	2.0	2.5	2.6
%								
Orthocladiinae/Total								
Chironomidae	0.6	0.8	2.2	7.6	25.3	94.5	98.9	100.0
% Coleoptera	0.6	1.2	5.9	11.3	12.1	16.4	9.4	17.5
%								
Hydropsychidae/Total								
Trichoptera	0.6	0.0	0.0	0.0	0.0	25.0	85.0	100.0
% Filterer	0.6	0.5	1.1	3.6	5.1	10.4	20.8	23.4
% Collector	0.9	27.8	31.6	46.8	51.2	76.3	92.0	96.0

Figure 47. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65k.

Table 48. Description of Numeric Ranking for Subecoregion 65k. n=all reference and impaired sites in subecoregion 65h.

Index Score	Numeric Ranking	Percentile n = 16
66 and above	1	Above 95th
58-65	. 2	Below 95 th , Above 75th
27-57	3	Below 75 th , Above 25th
16-26	4	Below 25 th , Above 5th
15 and below	5	Below 5th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
McQuaddy Branch	65k-85	Reference	74	1	very good	A
Spring Hill Creek	65k-54	Reference	63	2	good	A
Parker's Mill Creek	65k-55	Reference	61	2	good	A
Angelica Creek	65k-56	Reference	60	2	good	A
Bear Creek	65k-68	Reference	57	3	fair	В
Long Branch	65k-129	Impaired	56	3	fair	В
Big Cedar Creek	65k-37	Impaired	56	3	fair	В
Trib to Kinchafoonee						
Creek	65k-18	Impaired	37	3	fair	В
Town Creek	65k-128	Impaired	37	3	fair	В
Trib to Big Indian Creek	65k-99	Impaired	34	3	fair	В
Okeetuck Creek	65k-115	Impaired	32	3	fair	В
Maiden Creek	65k-100	Impaired	28	3	fair	В
Cedar Creek	65k-102	Impaired	25	4	poor	С
Crooked Creek	65k-113	Impaired	23	4	poor	С
Porter Creek	65k-110	Impaired	16	4	poor	C
Horsehead Creek	65k-127	Impaired	13	5	very poor	С

Table 49. Stream Rating for Subecoregion 65k.

Figure 48. 651 – Atlantic Southern Loam Plains (Vidalia Uplands).

Figure 49. Typical Reference Stream – Subecoregion 65I.

Figure 50. Typical Impaired Stream – Subecoregion 65I.

Table 50. Index 65I.

Metric	Metric Category
EPT Taxa	Richness
Diptera Taxa	
% EPT	Composition
% Trichoptera	
HBI	Tolerance
Predator Taxa	Functional Feeding Group
Clinger Taxa	Habitat

Table 51. Descriptive Statistics for Reference Streams in Subecoregion 65I. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Ρ				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
EPT Taxa	0.8	0.0	0.6	3.0	5.0	7.0	7.8	8.0
Diptera Taxa	0.6	13.0	15.4	25.0	26.0	32.0	33.6	34.0
% EPT	0.8	0.0	0.3	1.3	4.6	7.5	8.5	8.8
% Trichoptera	0.9	0.0	0.3	1.3	2.1	2.5	4.0	4.4
HBI	0.6	5.2	5.2	5.3	6.4	7.0	7.4	7.5
Predator Taxa	0.7	3.0	3.8	7.0	8.0	8.0	10.4	11.0
Clinger Taxa	0.8	1.0	1.6	4.0	5.0	8.0	11.2	12.0

Figure 51. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 65I.

Table 52. Description of Numeric Ranking for Subecoregion 65I. n=all reference and impaired sites in subecoregion 65I.

Index Score	Numeric Ranking	Percentile n = 19
92 and above	1	Above 95th
49-91	2	Below 95 th , Above 75th
23-48	3	Below 75 th , Above 25th
18-22	4	Below 25 th , Above 5th
17 and below	5	Below 5th

			Index	Numeric	Narrative	Stream
Stream	StationID	Condition	Score	Ranking	Description	Rating
Mill Creek	65I-10	Reference	94	1	very good	Α
Bay Branch	65I-146	Impaired	92	1	very good	Α
Little Sturgeon Creek	65I-381	Reference	74	2	good	A
Fishing Creek	651-343	Reference	66	2	good	A
Opposum Creek	651-342	Reference	52	2	good	Α
Stitchihatchie Creek	65L-184	Impaired	46	3	fair	В
Trib to Canochee River	651-160	Impaired	45	3	fair	в
Mill Branch	651-420	Impaired	40	3	fair	B
Pennahatchee Creek	651-280	Impaired	32	3	fair	В
Trib to Sandy Mount	651-281	Impaired	30	3	fair	В
Little Sturgeon Creek	651-391	Impaired	28	3	fair	В
Vicker's Stream	651-423	Impaired	27	3	fair	В
Brushy Creek	651-390	Impaired	25	3	fair	В
Wildcat Creek	651-277	Impaired	23	3	fair	В
Trib to Little Pennehatchee Creek	651-283	Impaired	21	4	poor	с
Little Creek	651-235	Impaired	20	4	poor	С
Reedy Creek	651-403	Impaired	20	4	poor	С
Camp Creek	651-234	Impaired	17	5	very poor	С
Red Bluff Creek	651-379	Reference	16	5	very poor	С

Table 53. Stream Rating for Subecoregion 65l.

Figure 52. 650 - Tallahassee Hills/Valdosta Limesink.

Figure 53. Typical Reference Stream – Subecoregion 65o.

Figure 54. Typical Impaired Stream – Subecoregion 650.

Table 54. Index 65o.

Metric	Metric Category
Chironomidae Taxa	Richness
% Oligochaeta	Composition
Beck's Index	Tolerance
NCBI	
Scraper Taxa	Functional Feeding Group
Burrower Taxa	Habitat
Sprawler Taxa	

Table 55. Descriptive Statistics for Reference Streams in Subecoregion 65o. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Percentile n = 4				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Chironomidae								
Таха	0.8	13.0	14.2	19.0	25.5	32.3	37.7	39.0
% Oligochaeta	0.8	0.0	0.0	0.0	1.9	3.9	4.3	4.4
Beck's Index	0.4	2.0	2.5	4.3	5.0	6.8	11.0	12.0
NCBI	0.6	5.3	5.4	5.5	6.0	6.9	8.0	8.2
Scraper Taxa	0.8	1.0	1.3	2.5	3.0	3.0	3.0	3.0
Burrower Taxa	0.6	3.0	3.5	5.3	6.0	8.8	15.4	17.0
Sprawler Taxa	0.8	3.0	3.9	7.5	9.0	9.0	9.0	9.0

Figure 55. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 650.

Table 56. Description of Numeric Ranking for Subecoregion 65o. n=all reference and impaired sites in subecoregion 65o.

Index Score	Numeric Ranking	Percentile n = 9
79 and above	1	Above 95th
74-78	2	Below 95 th , Above 75th
51-73	3	Below 75 th , Above 25th
33-50	4	Below 25 th , Above 5th
32 and below	5 .	Below 5th

Table 57. Stream Rating for Subecoregion 65o.

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Clyatt Mill Creek	650-23	Reference	82	1	very good	A
Redland Creek	650-24	Reference	74	2	good	A
Hadley Creek	650-12	Reference	74	2	good	A
Olive Creek	650-3	Impaired	69	3	fair	В
Trib to Withlacoochee	650-22	Impaired	58	3	fair	в
Trib to New River	650-25	Reference	53	3	fair	В
Pine Creek	650-11	Impaired	51	3	fair	В
Alagood Creek	650-18	Impaired	49	4	poor	С
Connell Creek	650-9	Impaired	23	5	very poor	С

Figure 56. Ecoregion 66 – Blue Ridge.

Table 58. Index 66.

Metric	Metric Category
Plecoptera Taxa	Pichpoop
Simpson's Index	Richness
% Trichoptera	Composition
% Intolerant Individuals	Composition
NCBI	Tolerance
Predator Taxa	Functional Feeding Group
Burrower Taxa	Habitat

Table 59. Descriptive Statistics for Reference Streams in Ecoregion 66. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Ρ	ercent n = 15	ile		
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Plecoptera Taxa	0.7	3.0	3.0	5.5	9.0	10.0	11.3	12.0
Simpson's Index	0.6	0.0	0.0	0.0	0.0	0.0	0.1	0.1
% Trichoptera	0.5	9.6	13.4	17.5	20.0	21.1	26.3	26.3
% Intolerant Individuals	0.6	12.5	18.5	24.6	37.9	48.3	52.0	54.7
NCBI	0.7	3.3	3.4	3.6	4.2	4.6	5.2	5.5
Predator Taxa	0.8	8.0	8.0	11.5	13.0	16.0	17.6	19.0
Burrower Taxa	0.5	4.0	4.7	6.0	7.0	8.5	9.6	11.0

Figure 57. Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 66.

81

Table 60. Description of Numeric Ranking for Ecoregion 66. n=all reference and impaired sites in ecoregion 66.

Index Score	Numeric Ranking	Percentile n = 32
90 and above	1	Above 95th
76-89	2	Below 95 th , Above 75th
49-75	3	Below 75 th , Above 25th
34-48	4	Below 25 th , Above 5th
33 and below	5	Below 5th

10	5
ŝ	5
dion	5
COLP	
ш	l
for	5
C	5
2.	
Ť	ŝ
û	2
ε	
a a	5
- 12	;
S.)
	•
5	
<i>a</i>	,
a	2
2	2
_α	3
-	•

Stream	StationID	Subecoregion	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Nimblewill Creek	66g-23	66g	Reference	92	-	very good	A
Clear Creek	66d-48	66d	Impaired	06	-	very good	A
Chattahoochee River	66d-40	66d	Reference	06	-	very good	A
Dukes Creek	66d-41	66d	Reference	88	2	good	A
Mill Creek	66g-5	66g	Reference	85	2	good	A
Rough Creek	66g-2-2	66g	Reference	80	2	good	A
West Fork Wolf Creek	66d-38	66d	Impaired	80	2	good	A
Moccasin Creek	66j-23	66j	Reference	77	2	good	A
Coleman River	66d-44-2	66d	Reference	75	m	fair	
South Fork Rapier Mill							
Creek	66j-28	66j	Reference	74	9	fair	ш
Trib to Talking Rock Creek	66g-42	669	Impaired	74	e	fair	ш
Bryan Creek	66j-211	66j	Reference	72	3	fair	ш
Tallulah River	66d-44	66d	Reference	70	3	fair	в
Wolf Creek	66j-26	66j	Impaired	68	e	fair	В
Hothouse Creek	66j-19	66j	Reference	67	3	fair	B
Holly Creek	66g-6	669	Reference	67	3	fair	в
Young Cane Creek	66j-27	66j	Impaired	63	3	fair	в
East Gumlog Creek	66j-31	66j	Reference	58	3	fair	ш
Yellow Creek	66g-71	66g	Impaired	56	3	fair	в
Tiger Creek	66d-49	66d	Impaired	55	3	fair	ш
Town Creek	66d-58	66d	Reference	55	ю	fair	ш
Sugar Creek	66j-9	66j	Impaired	53	3	fair	в
Hightower Creek	66d-43	66d	Impaired	51	3	fair	в
Jacks River	66g-2	669	Reference	50	3	fair	в
Flat Creek	669-39	66g	Impaired	43	4	poor	o
Talking Rock Creek	66g-65	66g	Impaired	41	4	poor	ပ
Stekoa Creek	66d-50	66d	Impaired	39	4	poor	ပ

Table 61. Stream Rating for Ecoregion 66 (cont.).

U	υ	U	υ	υ
poor	poor	very poor	very poor	very poor
4	4	5	5	5
39	39	33	33	32
Impaired	Impaired	Impaired	Impaired	Impaired
66g	66j	66j	669	66g
66g-31	66j-25	66j-17	66g-30	66g-44
Sharp Mountain Creek	Hemptown Creek	Ivylog Creek	Polecat Branch	Little Scarecorn Creek

Figure 58. 66d - Southern Crystalline Ridges & Mountains.

Figure 59. Typical Reference Stream - Subecoregion 66d.

Figure 60. Typical Impaired Stream - Subecoregion 66d.

Table 62. Index 66d.

Metric	Metric Category
Diptera Taxa	Richness
% Plecoptera	Composition
% Odonata	Composition
% Dominant Individuals	Tolerance
% Shredder	Functional Feeding Group
Clinger Taxa	Habitat

Table 63. Descriptive Statistics for Reference Streams in Subecoregion 66d. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				P	ercenti n = 5	le		
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Diptera Taxa	0.8	16.0	17.4	23.0	25.0	26.0	30.0	31.0
% Plecoptera	0.6	11.3	12.1	15.4	24.7	30.4	30.8	30.8
% Odonata	1.0	0.0	0.0	0.0	0.4	0.8	3.8	4.5
% Dominant Individuals	0.6	7.9	8.2	9.1	11.3	12.5	15.2	15.8
% Shredder	0.8	8.3	9.5	14.1	14.2	32.1	33.5	33.9
Clinger Taxa	0.6	15.0	15.8	19.0	22.0	23.0	30.2	32.0

Figure 61. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 66d.

Table 64. Description of Numeric Ranking for Subecoregion 66d. n=all reference and impaired sites in Subecoregion 66d.

Index Score	Numeric Ranking	Percentile n = 10
83 and above	1	Above 95th
74-82	2	Below 95 th , Above 75th
58-73	3	Below 75 th , Above 25th
43-57	4	Below 25 th , Above 5th
42 and below	5	Below 5 th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Tallulah River	66d-44	Reference	89	1	very good	A
Coleman River	66d-44-2	Reference	77	2	good	A
Chattahoochee River	66d-40	Reference	75	2	good	А
Hightower Creek	66d-43	Impaired	69	3	fair	В
Town Creek	66d-58	Reference	66	3	fair	В
Clear Creek	66d-48	Impaired	64	3	fair	В
Tiger Creek	66d-49	Impaired	60	3	fair	В
Dukes Creek	66d-41	Reference	58	3	fair	В
West Fork Wolf						
Creek	66d-38	Impaired	57	4	poor	С
Stekoa Creek	66d-50	Impaired	30	5	very poor	С

Table 65. Stream Rating for Subecoregion 66d.

Figure 62. 66g - Southern Metasedimentary Mountains.

Figure 63. Typical Reference Stream – Subecoregion 66g

Figure 64. Typical Impaired Stream – Subecoregion 66g.

Table 66. Index 66g.

Metric	Metric Category
EPT Taxa	Richness
% Chironomidae	Composition
% Tanypodinae/Total Chironomidae	Composition
NCBI	Teleranaa
% Dominant Individuals	Tolerance
Scraper Taxa	Functional Feeding Group
% Clinger	Habitat

Table 67. Descriptive Statistics for Reference Streams in Subecoregion 66g. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Percentile n = 5				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
EPT Taxa	0.9	11.0	14.2	27.0	27.0	35.0	36.6	37.0
% Chironomidae	0.9	3.6	5.5	13.2	22.5	23.8	24.0	24.0
% Tanypodinae/Total								
Chironomidae	0.9	0.0	0.4	1.9	7.1	7.1	8.4	8.8
NCBI	0.7	3.3	3.4	3.6	3.9	4.6	4.7	4.7
% Dominant Individuals	0.7	6.4	6.9	8.8	9.9	10.8	15.4	16.5
Scraper Taxa	0.9	3.0	3.6	6.0	7.0	8.0	9.6	10.0
% Clinger	0.7	26.4	30.5	46.7	52.4	57.5	75.4	79.9

Figure 65. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 66g.

Table 68. Description of Numeric Ranking for Subecoregion 66g. n=all reference and impaired sites in Subecoregion 66g.

Index Score	Numeric Ranking	Percentile n = 12
81 and above	1	Above 95th
72-80	2	Below 95 th , Above 75th
40-71	3	Below 75 th , Above 25th
33-39	4	Below 25 th , Above 5th
32 and below	5	Below 5th

Table 69. Stream Rating for Subecoregion 66g.

			Index	Numeric	Narrative	Stream
Stream	StationID	Condition	Score	Ranking	Description	Rating
Mill Creek	66g-5	Reference	85	1	very good	A
Nimblewill Creek	66g-23	Reference	78	2	good	A
Jacks River	66g-2	Reference	72	2	good	A
Holly Creek	66g-6	Reference	71	3	fair	В
Rough Creek	66g-2-2	Reference	67	3	fair	В
Trib to Talking Rock						
Creek	66g-42	Impaired	66	3	fair	В
Talking Rock Creek	66g-65	Impaired	47	3	fair	В
Yellow Creek	66g-71	Impaired	46	3	fair	В
Flat Creek	66g-39	Impaired	41	3	fair	В
Little Scarecorn Creek	66g-44	Impaired	39	4	poor	С
Sharp Mountain Creek	66g-31	Impaired	36	4	poor	С
Polecat Branch	66g-30	Impaired	26	5	very poor	С

Figure 67. Typical Reference Stream - Subecoregion 66j.

Figure 68. Typical Impaired Stream - Subecoregion 66j.

Table 70. Index 66j.

Metric	Metric Category
Simpson's Diversity Index	Pichnoso
Margalef's Index	Ricilless
% Tanytarsini	Composition
% Intolerant Individuals	Tolerance
Predator Taxa	Functional Feeding Group
Sprawler Taxa	Habitat

Table 71. Descriptive Statistics for Reference Streams in Subecoregion 66j. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Percentile n = 5				
Metrics	DE	Minimum	5 th	25th	50th	75th	95th	Maximum
Simpson's		1						
Diversity Index	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Margalef's								
Index	0.8	11.5	11.5	11.6	12.4	13.0	13.5	13.7
% Tanytarsini	0.8	1.7	1.8	2.1	5.4	5.8	11.5	12.9
% Intolerant								
Individuals	0.6	24.6	24.6	24.6	34.6	37.9	41.3	42.1
Predator Taxa	0.8	8.0	8.6	11.0	12.0	14.0	15.6	16.0
Sprawler Taxa	0.6	13.0	13.4	15.0	18.0	20.0	21.6	22.0

Figure 69. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 66j.

Table 72. Description of Numeric Ranking for Subecoregion 66j. n=all reference and impaired sites in Subecoregion 66j.

Index Score	Numeric Ranking	Percentile n = 10
85 and above	1	Above 95th
73-84	2	Below 95 th , Above 75th
51-72	3	Below 75 th , Above 25th
38-50	4	Below 25 th , Above 5th
37 and below	5	Below 5 th

			Index	Numeric	Narrativo	Stream
Stream	StationID	Condition	Score	Ranking	Description	Rating
South Fork Rapier Mill						
Creek	66j-28	Reference	87	1	very good	A
Bryan Creek	66j-211	Reference	82	2	good	A
East Gumlog Creek	66j-31	Reference	73	2	good	A
Moccasin Creek	66j-23	Reference	72	3	fair	В
Wolf Creek	66j-26	Impaired	71	3	fair	В
Hothouse Creek	66j-19	Reference	68	3	fair	В
Young Cane Creek	66j-27	Impaired	56	3	fair	В
Ivylog Creek	66j-17	Impaired	49	4	poor	С
Sugar Creek	66j-9	Impaired	47	4	poor	С
Hemptown Creek	66j-25	Impaired	31	5	very poor	С

Table 73. Stream Rating for Subecoregion 66j.

Figure 70. Ecoregion 67 - Ridge & Valley.

Table 74. Index 67.

Metric	Metric Category
EPT Taxa	Pichnoss
Plecoptera Taxa	Richness
% Plecoptera	Composition
% Isopoda	Composition
HBI	Tolerance
Clinger Taxa	Habitat

Table 75. Descriptive Statistics for Reference Streams in Ecoregion 67. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Percentile n = 13				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
EPT Taxa	0.8	4.0	5.2	11.0	14.0	18.0	22.8	24.0
Plecoptera Taxa	0.8	0.0	0.0	3.0	3.0	6.0	6.8	8.0
% Plecoptera	0.8	0.0	0.0	1.7	4.0	10.4	19.9	31.7
% Isopoda	0.7	0.0	0.0	0.0	0.0	3.8	7.0	11.3
HBI	0.8	3.0	3.1	3.8	4.0	4.9	6.3	7.3
Clinger Taxa	0.7	5.0	7.4	14.0	14.0	17.0	22.8	24.0

Figure 71. Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 67.

Table 76. Description of Numeric Ranking for Ecoregion 67. n=all reference and impaired sites in Ecoregion 67.

Index Score	Numeric Ranking	Percentile n = 26
77 and above	1	Above 95th
66-76	2	Below 95 th , Above 75th
33-65	3	Below 75 th , Above 25th
20-32	4	Below 25 th , Above 5th
19 and below	5	Below 5 th

\sim
9
ç
<u>.e</u>
D.
e
0
111
~
ō
-
2
÷
g
ur.
3
a
e
둤
0)
~
2
le 77
ble 77
able 77

Stream	StationID	Subecoregion	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Kings Creek	67h-9	67h	Reference	89	1	very good	A
Cane Creek	67f&i-16	67f&I	Reference	78	-	very good	A
Snake Creek	67h-4	67h	Reference	76	2	good	A
Little Armuchee Creek	67g-11	67g	Reference	75	2	good	A
East Chicamagua Creek	67h-2	67h	Reference	74	2	poog	A
Trib to Ruff Creek	67h-5	67h	Impaired	74	2	poob	A
Moss Creek	67g-13	679	Reference	99	2	poob	A
Clarks Creek	67f&i-25	67f&I	Reference	66	2	good	A
Armuchee Creek	67f&i-17	67f&I	Reference	65	e	fair	ш
Swamp Creek	67h-3	67h	Reference	64	е	fair	æ
Little Cedar Creek	67f&i-37	67f&I	Reference	55	e	fair	æ
Panther Creek	67h-8	67h	Impaired	53	e	fair	æ
Dozier Creek	67g-19	679	Impaired	49	e	fair	B
Trib to Little Armuchee							
Creek	67g-12	679	Reference	48	3	fair	в
Polecat Creek	679-6	679	Impaired	48	3	fair	в
Sugar Creek	67g-1	679	Impaired	40	3	fair	æ
Dykes Creek	67f&i-27	67f&I	Reference	37	3	fair	в
Coke Oven Branch	67f&I-5	67f&I	Impaired	36	3	fair	в
Jones Branch	67f&i-33	67f&I	Impaired	36	3	fair	в
Town Branch	67f&I-11	67f&I	Impaired	31	4	poor	J
Noblet Creek	67g-7	67g	Impaired	31	4	poor	c
Black Branch	67f&I-1	67f&I	Impaired	26	4	poor	ပ
Trib to Tiger Creek	67g-2	679	Ref/Removed	26	4	poor	U
Lick Creek	67g-9	679	Impaired	21	4	poor	c
Alpine Creek	67f&I-20	67f&I	Impaired	19	5	very poor	U
Trib to Armuchee Creek	67g-15	67g	Reference	17	S	very poor	ပ

Figure 72. 67f&i – Southern Limestone/Dolomite Valleys & Low Rolling Hills and Southern Dissected Ridges & Knobs.

Figure 73. Typical Reference Stream - Subecoregion 67f&i.

Figure 74. Typical Impaired Stream - Subecoregion 67f&i.

Table 78. Index 67f&i.

Metric	Metric Category
EPT Taxa	Pichnoso
Plecoptera Taxa	Richness
% EPT	Composition
NCBI	Tolerance
Scraper Taxa	Functional Feeding Group
% Clinger	Habitat

Table 79. Descriptive Statistics for Reference Streams in Subecoregion 67f&i. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Р				
		100 C			n = 5			
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
EPT Taxa	1.0	6.0	7.0	11.0	14.0	15.0	16.6	17.0
Plecoptera Taxa	1.0	0.0	0.6	3.0	3.0	6.0	6.0	6.0
% EPT	1.0	17.9	18.8	22.5	34.2	42.5	48.5	50.0
NCBI	0.8	3.7	3.7	3.9	4.4	4.8	4.9	4.9
Scraper Taxa	0.8	5.0	5.0	5.0	6.0	7.0	7.0	7.0
% Clinger	1.0	26.7	27.8	32.1	36.3	45.0	55.7	58.3

Figure 75. Discriminating Index Characteristic between Reference and Impaired Streams for 67f&i.

Table 80. Description of Numeric Ranking for Subecoregion 67f&i. n=all reference and impaired sites in Subecoregion 67f&i.

Index Score	Numeric Ranking	Percentile n = 10
81 and above	1	Above 95th
74-80	2	Below 95 th , Above 75th
28-73	3	Below 75 th , Above 25th
21-27	4	Below 25 th , Above 5th
20 and below	5	Below 5 th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Cane Creek	67f&i-16	Reference	85	1	very good	А
Clarks Creek	67f&i-25	Reference	76	2	good	A
Little Cedar Creek	67f&i-37	Reference	73	3	fair	в
Armuchee Creek	67f&i-17	Reference	71	3	fair	В
Dykes Creek	67f&i-27	Reference	63	3	fair	В
Coke Oven Branch	67f&I-5	Impaired	35	3	fair	в
Town Branch	67f&I-11	Impaired	32	3	fair	В
Jones Branch	67f&i-33	Impaired	27	4	poor	С
Black Branch	67f&I-1	Impaired	20	5	very poor	C
Alpine Creek	67f&I-20	Impaired	19	5	very poor	С

Table 81. Stream Rating for Subecoregion 67f&i.

Figure 76. 67g - Southern Shale Valleys.

Figure 77. Typical Reference Stream – Subecoregion 67g.

Figure 78. Typical Impaired Stream - Subecoregion 67g.

Table 82. Index 67g.

Metric	Metric Category		
Plecoptera Taxa	Richness		
% Hydropsychidae/Total Trichoptera	Composition		
% Orthocladiinae/ Total Chironomidae	Composition		
Shredder Taxa	Eunctional Ecoding Group		
Collector Taxa	Functional Feeding Group		
Sprawler Taxa	Habitat		

Table 83. Descriptive Statistics for Reference Streams in Subecoregion 67g. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile					
					n = 4			
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Plecoptera Taxa	0.8	0.0	0.3	1.5	3.5	5.3	5.9	6.0
%								
Hydropsychidae/Total		1						
Trichoptera	0.8	0.0	0.0	0.0	13.9	29.2	32.5	33.3
% Orthocladiinae/								
Total Chironomidae	1.0	27.5	28.5	32.3	48.1	67.2	79.1	82.1
Shredder Taxa	0.8	3.0	3.3	4.5	5.0	5.0	5.0	5.0
Collector Taxa	1.0	15.0	15.8	18.8	21.0	22.8	24.6	25.0
Sprawler Taxa	0.6	9.0	9.0	9.0	9.5	11.5	15.1	16.0

Figure 79. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 67g.

Table 84. Description of Numeric Ranking for Subecoregion 67g. n=all reference and impaired sites in Subecoregion 67g.

Index Score	Numeric Ranking	Percentile n = 10
78 and above	1	Above 95th
71-77	2	Below 95 th , Above 75th
38-70	3	Below 75 th , Above 25th
30-37	4	Below 25 th , Above 5th
29 and below	5	Below 5 th

Table 85. Stream Rating for Subecoregion 67g.

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Moss Creek	67g-13	Reference	81	1	very good	A
Little Armuchee Creek	67g-11	Reference	76	2	good	A
Trib to Armuchee Creek	67g-15	Reference	71	2	good	A
Trib to Little Armuchee Creek	67g-12	Reference	70	3	fair	в
Noblet Creek	67g-7	Impaired	55	3	fair	В
Dozier Creek	67g-19	Impaired	45	3	fair	В
Lick Creek	67g-9	Impaired	38	3	fair	В
Polecat Creek	67g-6	Impaired	37	4	poor	С
Trib to Tiger Creek	67g-2	Ref/Removed	36	4	poor	С
Sugar Creek	67g-1	Impaired	23	5	very poor	С

Figure 80. 67h-Southern Sandstone Ridges.

Figure 81. Typical Reference Stream - Subecoregion 67h.

Figure 82. Typical Impaired Stream – Subecoregion 67h.

Table 86. Index 67h.

Metric	Metric Category
Plecoptera Taxa	Richness
% Gastropoda	Composition
% Tolerant Individuals	Telerance
HBI	Tolerance
Scraper Taxa	Functional Feeding Group
Swimmer Taxa	Habitat

Table 87. Descriptive Statistics for Reference Streams in Subecoregion 67h. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Р	ercenti n = 4	ile		
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Plecoptera Taxa	0.5	3.0	3.0	3.0	3.5	5.0	7.4	8.0
% Gastropoda	1.0	21.0	21.5	23.4	25.6	28.9	33.3	34.4
% Tolerant Individuals	1.0	3.4	4.0	6.2	7.4	8.2	9.0	9.3
HBI	1.0	3.0	3.0	3.2	3.3	3.5	3.7	3.8
Scraper Taxa	1.0	6.0	6.2	6.8	7.0	8.3	11.3	12.0
Swimmer Taxa	1.0	0.0	0.3	1.5	2.0	2.0	2.0	2.0

Figure 83. Discriminating Index Characteristic between Reference and Impaired Streams for 67h.

Table 88. Description of Numeric Ranking for Subecoregion 67h. n=all reference and impaired sites in subecoregion 67h.

Index Score	Numeric Ranking	Percentile n = 6
86 and above	1	Above 95th
80-85	2	Below 95 th , Above 75th
51-79	3	Below 75 th , Above 25th
25-50	4	Below 25 th , Above 5th
24 and below	5	Below 5 th

Table 69. Stream Rating for Subecoregion 67	Table 89	. Stream	Rating	for	Subecoregion	67a
---	----------	----------	--------	-----	--------------	-----

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Ranking
East Chicamagua						
Creek	67h-2	Reference	81	1	very good	A
Swamp Creek	67h-3	Reference	76	2	good	A
Snake Creek	67h-4	Reference	61	3	fair	В
Kings Creek	67h-9	Reference	88	3	fair	В
Trib to Ruff Creek	67h-5	Impaired	46	4	poor	С
Panther Creek	67h-8	Impaired	17	5	very poor	С

Figure 84. 68 – Southwestern Appalachians.

Figure 85. Typical Reference Stream – Subecoregion 68c&d.

Figure 86. Typical Impaired Stream - Subecoregion 68c&d.

Table 90. Index 68c&d.

Metric	Metric Category					
Plecoptera Taxa	Richness					
% Hydropsychidae/Total Trichoptera	Composition					
% Tanypodinae/Total Chironomidae	Composition					
NCBI	Tolerance					
Scraper Taxa	Functional Feeding Group					
% Clinger	Habitat					

Table 91. Descriptive Statistics for Reference Streams in Subecoregion 68c&d. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				P				
		-						
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Plecoptera Taxa	0.8	3.0	3.2	3.8	4.0	4.0	4.0	4.0
%								
Hydropsychidae/Total								
Trichoptera	0.6	0.0	0.0	0.0	2.1	6.1	10.6	11.8
% Tanypodinae/Total								
Chironomidae	0.8	0.6	1.4	4.5	9.9	14.3	15.2	15.4
NCBI	1.0	2.9	3.1	3.8	4.3	4.8	5.7	5.9
Scraper Taxa	0.8	1.0	1.5	3.3	4.5	5.5	6.7	7.0
% Clinger	0.6	0.8	5.6	24.9	34.5	36.0	36.1	36.1

Figure 87. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 68c&d.

Table 92. Description of Numeric Ranking for Subecoregion 68c&d. n=all reference and impaired sites in Subecoregion 68c&d.

Index Score	Numeric Ranking	Percentile n = 9
83 and above	1	Above 95 th
77-82	2	Below 95 th , Above 75 th
43-76	3	Below 75 th , Above 25 th
31-42	4	Below 25 th , Above 5 th
30 and below	5	Below 5 th

Table 93. Stream Rating for Subecoregion 68c&d.

			Index	Numeric	Narrative	Stream
Stream	StationID	Condition	Score	Ranking	Description	Ranking
Daniels Creek	68c&d-6	Reference	83	1	very good	A
Bear Creek	68c&d-5	Reference	83	1	very good	A
Rock Creek	68c&d-4	Reference	77	2	good	A
Trib to Middle Fork Little						
River	68c&d-8	Impaired	60	3	fair	В
Allen Creek	68c&d-9	Reference	59	3	fair	В
Running Water Creek	68c&d-1	Impaired	46	3	fair	В
West Fork Little River	68c&d-7	Impaired	43	3	fair	В
Higdon Creek	68c&d-3	Impaired	32	4	poor	С
East Fork Little River	68c&d-10	Impaired	30	5	very poor	С

Figure 88. Ecoregion 75 – Southern Coastal Plain.

Table 94. Index 75.

Metric	Metric Category
% Non-Insect	
% Oligochaeta	Composition
% Odonata	Composition
% Tanypodinae/Total Chironomidae	
Tolerant Taxa	Toloropoo
% Tolerant Individuals	rolerance

Table 95. Descriptive Statistics for Reference Streams in Ecoregion 75. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

Metrics	DE	Minimum	5th	25th	Maximum			
% Non-Insect	0.6	0.5	1.7	6.2	16.7	31.9	89.3	92.4
% Oligochaeta	0.7	0.0	0.0	0.7	1.0	3.9	6.5	8.1
% Odonata	0.5	0.0	0.0	0.0	0.0	0.5	3.3	9.2
% Tanypodinae/Total								
Chironomidae	0.5	0.0	0.0	0.0	0.2	1.8	16.3	34.4
Tolerant Taxa	0.6	0.0	1.0	2.8	6.0	8.0	19.9	21.0
% Tolerant Individuals	0.5	0.0	1.0	11.7	29.8	53.8	68.8	93.3

Figure 89. Discriminating Index Characteristic between Reference and Impaired Streams for Ecoregion 75.

Table 96. Description of Numeric Ranking for Ecoregion 75. n=all reference and impaired sites in Ecoregion 75.

Index Score	Numeric Ranking	Percentile n = 60
94 and above	1	Above 95 th
84-93	2	Below 95 th , Above 75 th
65-83	3	Below 75 th , Above 25 th
50-64	4	Below 25 th , Above 5 th
49 and below	5	Below 5 th

22
Ecoregion 7
for
Rating
Stream
97.
Table

																										_
Stream Rating	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	в	В	В	в	8	в	в	8	8
Narrative Description	very good	very good	very good	very good	very good	poog	poob	good	boog	poob	poob	poob	poog	poob	poob	good	good	fair	fair	fair	fair	fair	fair	fair	fair	fair
Numeric Ranking	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	e	3	3	3	e
Index Score	100	86	67	94	94	92	92	92	91	91	87	87	87	86	85	84	84	83	82	82	81	81	81	80	80	79
Condition	Reference	Reference	Impaired	Reference	Reference	Reference	Reference	Reference	Reference	Reference	Impaired	Impaired	Reference	Reference	Reference	Impaired	Impaired	Impaired	Reference	Reference	Reference	Reference	Impaired	Reference	Impaired	Impaired
Subecoregion	75j	75j	75]	75h	75f	75j	75e	75h	75e	75h	75f	75]	75e	75j	75j	75j	75j	75]	75f	75j	75]	75j	75f	75f	75f	75e
StationID	75j-16	75j-10	75j-13	75h-35	75f-91	75j-15	75e-23	75h-45	75e-69	75h-10	75f-28	75j-2	75e-78	75j-26	75]-37	75j-21	75j-24	75j-4	75f-95	75j-25	75]-5	75j-41	75f-132	75f-124	75f-48	75e-20
Stream	Atwood Creek	Trib to South Newport River	Trib to Black Island Creek	Trib to Hurricane Creek	Little Creek	Trib Hudson Creek	Suwannoochee Creek	Dry Creek	Big Branch	Keene Bay Branch	Black Creek	Trib to Little Ogeechee River	Trib to Alapaha River	Trib to Little Satilla River	Trib to Brickhill	Airport Creek	Yellow Bluff Creek	Trib to Wilmington River	Cathead Creek	Trib to White Oak Creek	Trib Jones Creek	White Branch	Hatcher's Branch	Trib to Little Waverly Creek	Bull Creek	Fullwood Creek

(cont
75
Ecoregion
for
Rating
Stream
97.
able

÷

۵	в	æ	æ	в	8	æ	m	æ	B	m	в	в	в	ш	в	в	۵	U	U	U	ပ	U	o	o	ပ	ပ	ပ	ပ	o
fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	fair	poor	poor	poor	poor	poor	poor	poor	poor	poor	poor	poor	poor
e	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	е	4	4	4	4	4	4	4	4	4	4	4	4
79	78	76	73	72	11	70	70	70	70	68	68	68	68	66	65	65	65	64	64	64	62	61	59	59	59	57	56	55	50
Reference	Impaired	Reference	Impaired	Impaired	Reference	Reference	Impaired	Impaired	Impaired	Impaired	Impaired	Reference	Impaired	Impaired	Impaired	Ref/Removed	Impaired	Reference	Impaired	Impaired	Impaired	Impaired	Impaired	Reference	Impaired	Impaired	Impaired	Impaired	Impaired
75]	75f	75e	75f	75f	75f	75f	75e	75h	75f	75j	75f	75e	75h	75e	75h	75j	75e	75h	75h	75]	75j	75]	75e	75h	75e	75f	75e	75h	75]
75j-31	75f-127	75e-59	75f-137	75f-70	75f-126	75f-61	75e-54	75h-47	75f-44	75j-23	75f-15	75e-60	75h-69	75e-3	75h-1	75j-29	75e-2	75h-60	75h-70	75j-12	75j-11	75j-3	75e-36	75h-66	75e-8	75f-77	75e-61	75h-41	75j-3-1
Todd Creek	Reynolds Creek	Ray Branch	Clay Branch	Trib to Taylor Creek	Waverly Creek	Raccoon Branch	Reedy Creek	Cat Creek	Springfield Canal	Law Creek	Ashley Creek	Meetinghouse Branch	Trib to Satilla River	Trib to Alapaha River	Burket Stream	Trib to Radcliffe Creek	Pudding Creek	Trib to Alapaha	Pond Fork	Trib to Black Island Creek	Trib to Sapelo River	Trib to Hoover Creek	Swain Creek	Otter Creek	Pearson Creek	Newport River	Otter Creek	Briar Creek	Trib to Hoover Creek

Table 97. Stream Rating for Ecoregion 75 (cont.).

0	U	J	υ
very poor	very poor	very poor	very poor
2	2	2	5
49	48	47	44
Impaired	Impaired	Impaired	Impaired
75e	75h	75f	75f
75e-46	75h-72	75f-50	75f-45
Moore Branch	Mill Creek	Canoochee Creek	Haney's Creek

Figure 90. 75e – Okefenokee Plains.

Figure 91. Typical Reference Stream – Subecoregion 75e.

Figure 92. Typical Impaired Stream – Subecoregion 75e.

Table 98. Index 75e.

Metric	Metric Category
% Non-Insect	
% Oligochaeta	Composition
% Isopoda	Composition
% Odonata	
% Tolerant Individuals	Tolerance
% Filterer	Functional Feeding Group

Table 99. Descriptive Statistics for Reference Streams in Subecoregion 75e. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n = 5						
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum	
% Non-Insect	0.9	6.1	6.6	8.9	13.9	15.4	17.4	17.9	
% Oligochaeta	0.9	0.0	0.1	0.4	0.8	0.9	1.0	1.0	
% Isopoda	0.6	4.4	4.9	6.8	8.7	12.1	14.4	15.0	
% Odonata	0.6	0.0	0.0	0.0	0.0	0.4	0.8	0.8	
% Tolerant									
Individuals	0.6	12.0	19.3	28.9	56.7	60.7	79.4	81.8	
% Filterer	0.6	0.0	0.1	0.6	0.8	1.0	13.7	16.9	

Figure 93. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75e.

Table 100. Description of Numeric Ranking for Subecoregion 75e. n=all reference and impaired sites in Subecoregion 75e.

Index Score	Numeric Ranking	Percentile n = 13
84 and above	1	Above 95 th
75-83	2	Below 95 th , Above 75 th
53-74	3	Below 75 th , Above 25 th
31-52	4	Below 25 th , Above 5 th
30 and below	5	Below 5 th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Ray Branch	75e-59	Reference	84	1	very good	A
Suwannoochee						
Creek	75e-23	Reference	83	2	good	A
Big Branch	75e-69	Reference	80	2	good	A
Trib to Alapaha						
River	75e-78	Reference	75	2	good	A
Pudding Creek	75e-2	Impaired	75	2	good	A
Reedy Creek	75e-54	Impaired	73	3	fair	В
Fullwood Creek	75e-20	Impaired	73	3	fair	В
Meetinghouse Branch	75e-60	Reference	66	3	fair	в
Trib to Alapaha						
River	75e-3	Impaired	62	3	fair	В
Otter Creek	75e-61	Impaired	52	4	poor	С
Moore Branch	75e-46	Impaired	45	4	poor	С
Swain Creek	75e-36	Impaired	34	4	poor	С
Pearson Creek	75e-8	Impaired	26	5	very poor	С

Table 101. Stream Rating for Subecoregion 75e.

Figure 94. 75f - Sea Island Flatwoods.

Figure 95. Typical Reference Stream – Subecoregion 75f.

Figure 96. Typical Impaired Stream – Subecoregion 75f.

Table 102. Index 75f.

Metric	Metric Category					
% Oligochaeta	Composition					
% Tanypodinae/Total Chironomidae	Composition					
Tolerant Taxa	Tolerance					
% Filterer	Functional Feeding Group					

Table 103. Descriptive Statistics for Reference Streams in Subecoregion 75f. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

	Percentile n = 4							
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
% Oligochaeta	0.7	0.0	0.0	0.0	1.9	4.8	7.4	8.1
%								
Tanypodinae/Total								
Chironomidae	0.8	0.0	0.0	0.0	0.0	0.1	0.4	0.5
Tolerant Taxa	0.8	4.0	4.2	4.8	6.5	8.5	9.7	10.0
% Filterer	0.7	0.0	0.0	0.0	0.2	0.6	0.9	0.9

Figure 97. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75f.

Table 104. Description of Numeric Ranking for Subecoregion 75f. n=all reference and impaired sites in Subecoregion 75f.

Index Score	Numeric Ranking	Percentile n = 15
98 and above	1	Above 95 th
86-97	2	Below 95 th , Above 75 th
60-85	3	Below 75 th , Above 25 th
41-59	4	Below 25 th , Above 5 th
40 and below	5	Below 5 th

Table 105. Stream Rating for Subecoregion 75f.

			Index	Numeric	Narrative	Stream
Stream	StationID	Condition	Score	Ranking	Description	Rating
Raccoon Branch	75f-61	Reference	100	1	very good	A
Little Creek	75f-91	Reference	98	1	very good	A
Black Creek	75f-28	Impaired	93	2	good	A
Cathead Creek	75f-95	Reference	89	2	good	A
Waverly Creek	75f-126	Reference	83	3	fair	В
Springfield Canal	75f-44	Impaired	79	3	fair	В
Bull Creek	75f-48	Impaired	74	3	fair	В
Trib to Taylor						
Creek	75f-70	Impaired	74	3	fair	В
Clay Branch	75f-137	Impaired	69	3	fair	В
Hatcher's Branch	75f-132	Impaired	67	3	fair	В
Ashley Creek	75f-15	Impaired	65	3	fair	В
Newport River	75f-77	Impaired	55	4	poor	С
Reynolds Creek	75f-127	Impaired	53	4	poor	С
Canoochee						
Creek	75f-50	Impaired	47	4	poor	С
Haney's Creek	75f-45	Impaired	26	5	very poor	С

Figure 98. 75h – Bacon Terraces.

Figure 99. Typical Reference Stream – Subecoregion 75h.

Figure 100. Typical Impaired Stream - Subecoregion 75h.

Table 106. Index 75h.

Metric	Metric Category					
% Oligochaeta	Composition					
% Tolerant Individuals	Toloronoo					
HBI	Tolerance					
% Shredder						
Collector Taxa	Functional Feeding Group					
% Filterer						

Table 107. Descriptive Statistics for Reference Streams in Subecoregion 75h. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				P				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
% Oligochaeta	0.8	0.0	0.2	0.8	1.3	4.1	4.2	4.2
% Tolerant Individuals	0.8	8.9	10.4	16.3	37.2	41.3	52.3	55.0
HBI	0.5	5.2	5.3	5.4	6.6	7.0	7.1	7.1
% Shredder	0.8	0.0	0.2	1.0	1.3	2.3	5.8	6.7
Collector Taxa	0.5	7.0	7.2	8.0	11.0	15.0	15.8	16.0
% Filterer	0.5	0.0	0.0	0.0	2.5	9.6	20.9	23.7

Figure 101. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75h.

Table 108. Description of Numeric Ranking for Subecoregion 75h. n=all reference and impaired sites in Subecoregion 75h.

Index Score	Numeric Ranking	Percentile n = 11
77 and above	1	Above 95 th
65-76	2	Below 95 th , Above 75 th
39-64	3	Below 75 th , Above 25 th
25-38	4	Below 25 th , Above 5 th
24 and below	5	Below 5 th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Otter Creek	75h-66	Reference	80	1	very good	A
Keene Bay Branch	75h-10	Reference	77	1	very good	A
Dry Creek	75h-45	Reference	65	2	good	A
Trib to Alapaha	75h-60	Reference	64	3	fair	В
Trib to Hurricane Creek	75h-35	Reference	64	3	fair	в
Pond Fork	75h-70	Impaired	63	3	fair	В
Burket Stream	75h-1	Impaired	48	3	fair	В
Cat Creek	75h-47	Impaired	44	3	fair	В
Briar Creek	75h-41	Impaired	34	4	poor	С
Trib to Satilla River	75h-69	Impaired	27	4	poor	С
Mill Creek	75h-72	Impaired	24	5	very poor	С

Table 109. Stream Rating for Subecoregion 75h.

Figure 102. 75j-Sea Islands/Coastal Marsh.

Figure 103. Typical Reference Stream – Subecoregion 75j.

Figure 104. Typical Impaired Stream - Subecoregion 75j.

Table 110. Index 75j.

Metric	Metric Category			
% Non-Insect	Composition			
% Oligochaeta	Composition			
% Tolerant Individuals	Tolerance			
Shredder Taxa	Functional Feeding Group			

Table 111. Descriptive Statistics for Reference Streams in Subecoregion 75j. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Ρ				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
% Non-Insect	0.6	1.8	1.9	14.3	29.1	42.3	84.4	92.4
% Oligochaeta	0.5	0.0	0.4	1.0	1.9	3.9	6.3	6.7
% Tolerant Individuals	0.6	0.0	0.4	3.2	19.0	46.4	62.2	25.9
Shredder Taxa	0.5	0.0	0.0	1.0	1.0	1.8	2.0	2.0

Figure 105. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75j.

Table 112. Description of Numeric Ranking for Subecoregion 75j. n=all reference and impaired sites in Subecoregion 75j.

Index Score	Numeric Ranking	Percentile n = 21
92 and above	1	Above 95 th
77-91	2	Below 95 th , Above 75 th
52-76	3	Below 75 th , Above 25 th
27-51	4	Below 25 th , Above 5 th
26 and below	5	Below 5 th

Table 113. Stream Rating for Subecoregion 75j.

Stream	StationID	Tidal Influenced	Condition	Index Score	Numeric Ranking	Narrative Description
Trib to South Newport					0	
River	75j-10	No	Reference	67	-	very good
Trib Hudson Creek	75J-15	No	Reference	91	2	good
Atwood Creek	75j-16	Yes	Reference	87	2	good
Trib to White Oak Creek	75j-25	No	Reference	77	2	poob
Trib to Little Satilla River	75j-26	٩	Reference	73	e	fair
Trib to Brickhill	75j-37	Yes	Reference	68	9	fair
Todd Creek	75]-31	Yes	Reference	65	e	fair
White Branch	75j-41	Yes	Reference	61	e	fair
Trib to Little Waverly						
Creek	75f-124	Yes	Reference	52	e	fair
Trib Jones Creek	75j-5	Yes	Reference	52	9	fair
Trib to Radcliffe Creek	75j-29	No	Ref/Removed	47	4	poor
Trib to Black Island Creek	75j-13	٥N	Impaired	85	2	poob
Trib to Little Ogeechee						
River	75j-2	No	Impaired	80	2	good
Trib to Wilmington River	75j-4	No	Impaired	74	3	fair
Airport Creek	75j-21	Yes	Impaired	63	3	fair
Trib to Black Island Creek	75j-12	No	Impaired	53	3	fair
Yellow Bluff Creek	75j-24	Yes	Impaired	51	4	poor
Trib to Sapelo River	75j-11	No	Impaired	30	4	poor
Trib to Hoover Creek	75j-3	Yes	Impaired	28	4	poor
Law Creek	75j-23	Yes	Impaired	27	4	poor
Trib to Hoover Creek	75]-3-1	Yes	Impaired	16	5	very poor

Table 114. Index 75j Nontidal.

Metric	Metric Category
% Amphipoda	
% Oligochaeta	Composition
% Tanypodinae/Total Chironomidae	
% HBI	Tolerance
% Shredder	Functional Feeding Group

Table 115. Descriptive Statistics for Reference Streams in Subecoregion 75j Nontidal. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

				Ρ				
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
% Amphipoda	0.8	0.4	1.1	3.8	11.0	20.4	28.4	30.4
% Oligochaeta	0.8	0.8	0.9	0.9	1.3	2.7	5.2	5.8
%								
Tanypodinae/Total								
Chironomidae	1.0	0.6	0.6	0.7	1.0	1.4	1.6	1.6
% HBI	0.8	6.9	7.0	7.2	7.3	7.4	7.6	7.6
% Shredder	0.6	1.0	1.0	1.2	1.3	2.0	3.7	4.2

Figure 106. Discriminating Index Characteristic between Reference and Impaired Streams for Subecoregion 75j Nontidal.

Table 116. Description of Numeric Ranking for Subecoregion 75j Nontidal. n=all reference and impaired sites in subecoregion 75j nontidal.

Index Score	Numeric Ranking	Percentile n = 10
74 and above	1	Above 95 th
72-73	2	Below 95 th , Above 75 th
44-71	3	Below 75 th , Above 25 th
24-43	4	Below 25 th , Above 5 th
23 and below	5	Below 5 th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Trib to White Oak Creek	75j-25	Reference	75	1	very good	A
Trib Hudson Creek	75j-15	Reference	73	2	good	A
Trib to Little Satilla River	75j-26	Reference	72	2	good	A
Trib to Black Island Creek	75j-13	Impaired	70	3	fair	В
Trib to South Newport						
River	75j-10	Reference	65	3	fair	В
Trib to Radcliffe Creek	75j-29	ref/removed	56	3	fair	В
Trib to Black Island Creek	75j-12	Impaired	47	3	fair	В
Trib to Little Ogeechee						
River	75j-2	Impaired	43	4	poor	С
Trib to Sapelo River	75j-11	Impaired	30	4	poor	С
Trib to Wilmington River	75j-4	Impaired	19	5	very poor	С

Table 117. Stream Rating for Subecoregion 75j Nontidal.

Table 118. Index 75j Tidal.

Metric	Metric Category		
Simpson's D	Richness		
% Non-Insect	Composition		
% Tolerant Individuals	Tolerance		
% Shredder	Functional Feeding Group		
% Predator			

Table 119. Descriptive Statistics for Reference Streams in Subecoregion 75j Tidal. n = number of reference sites used. DE = discrimination efficiency between reference and impaired conditions.

			Percentile n = 6					
Metrics	DE	Minimum	5th	25th	50th	75th	95th	Maximum
Simpson's D	0.6	0.1	0.1	0.2	0.2	0.4	0.8	0.9
% Non-Insect	0.8	1.8	1.9	7.4	27.2	63.7	88.0	92.4
% Tolerant Individuals	0.6	0.9	3.0	9.6	30.1	52.3	65.4	69.5
% Shredder	0.8	0.0	0.0	0.8	3.5	7.3	12.9	14.4
% Predator	0.6	0.0	0.0	0.2	1.1	1.4	5.5	6.8

Figure 107. Discriminating Index Characteristic between Reference and Impaired Stream for Subecoregion 75j Tidal.

Table 120. Description of Numeric Ranking for Subecoregion 75j Tidal. n=all reference and impaired sites in Subecoregion 75j Tidal.

Index Score	Numeric Ranking	Percentile n = 11
68 and above	1	Above 95 th
57-67	2	Below 95 th , Above 75 th
29-56	3	Below 75 th , Above 25 th
14-28	4	Below 25 th , Above 5 th
13 and below	5	Below 5 th

Stream	StationID	Condition	Index Score	Numeric Ranking	Narrative Description	Stream Rating
Trib to Brickhill	75j-37	Reference	71	1	very good	A
Todd Creek	75j-31	Reference	64	2	good	А
Airport Creek	75j-21	Impaired	58	2	good	А
Trib to Little Waverly						
Creek	75f-124	Reference	57	2	good	A
Trib Jones Creek	75j-5	Reference	45	3	fair	В
Atwood Creek	75j-16	Reference	45	3	fair	В
White Branch	75j-41	Reference	34	3	fair	В
Yellow Bluff Creek	75j-24	Impaired	33	3	fair	В
Law Creek	75j-23	Impaired	25	4	poor	С
Trib to Hoover Creek	75j-3-1	Impaired	18	4	poor	С
Trib to Hoover Creek	75j-3	Impaired	11	5	very poor	С

Table 121. Stream Rating for Subecoregion 75j Tidal.

Table 122. Correlations between Index Scores and Percent Land Use: Ecoregion Level.

Ecoregion	Land Use		
	%	%	% Total
	Natural	Urban	Agriculture
45	0.47	-0.63	-0.02
65	0.49	-0.07	-0.50
66	0.23	0.05	-0.60
67	0.51	-0.42	-0.37
68	0.10	0.39	-0.31
75	0.40	-0.18	-0.35

Table 123. Correlations between Index Scores and Percent Land Use: Subecoregion Level.

Subecoregion	Land Use		
	%	%	% Total
	Natural	Urban	Agriculture
45a	0.74	-0.88	0.39
45b	0.79	-0.73	0.13
45c	0.53	-0.14	-0.51
45d	-0.17	-0.64	-0.49
45h	0.68	-0.18	-0.63
65c	0.65	-0.46	-0.29
65d	0.77	-0.63	-0.26
65g	0.73	-0.16	-0.69
65h	0.61	0.28	-0.81
65k	0.75	-0.18	-0.70
651	0.44	0.05	-0.47
650	-0.20	0.35	0.44
66d	0.00	-0.79	-0.47
66g	0.91	0.25	-0.78
66j	-0.27	-0.23	-0.50
67f&i	0.83	-0.64	-0.52
67g	0.52	-0.32	-0.23
67h	0.48	0.97	0.94
75e	0.53	-0.07	-0.53
75f	0.70	-0.58	-0.15
75h	0.28	-0.53	-0.19
75j	0.33	-0.29	0.02
75j nontidal	0.46	-0.45	-0.09
75j tidal	0.80	-0.75	-0.13

Discussion

The Multimetric Rating System can be used to guide non-point source regulations for Georgia's streams. Using the macroinvertebrate community as a biomontior, the Multimetric Rating System uses fundamental characteristics of the stream community to determine the overall health or condition of that community. By using macroinvertebrate assemblages as a reference for stream condition, the Multimetric Rating System can be used to describe the condition for the entire stream community and therefore determine overall stream condition or health.

The multimetric method is a valid assessor of biological systems because of its ability to describe interactions among several levels of the lotic community, to discriminate between natural and impaired conditions, and to detect a range of stream conditions (Barbour *et al.* 1995). The Multimetric Rating System determines levels of impairment within the subecoregion or ecoregion level relative to the least impaired condition in the same region. By developing indices based on multiple metric data, the Multimetric Rating System can be used as a tool for making sound water management decisions.

The Multimetric Rating System describes each stream's condition within a subecoregion or ecoregion as compared to the reference stream condition; the more a stream varies from the reference condition the more impaired the stream. Streams classified as impaired were selected based on a gradient of impaired conditions. Several reference streams were sampled in each subecoregion to

provide an average reference condition. Using "least impaired streams" as a reference condition, each stream received a rating at the ecoregion and subecoregion level.

When developing the Multimetric Rating System, it was determined that each stream would be described according to the macroinvertebrate data and not to the stream's original classification. As a result, all streams were rated independent of their reference or impaired classification. For instance, an impaired stream may rate as a "B" or "good" stream, and vice versa, a reference stream may rate as a "C" or "poor/very poor" stream.

In this study, 1994 land use data were used to originally classify streams as reference or impaired. In the field, streams classified as reference were assessed for their current and most accurate observational condition. Because of the time delay between the land use data collection and the collection of data for this project, sometimes present conditions did not always correspond with the 1994 land use data. Candidate reference streams were automatically excluded if they were channelized, exhibited a limited or nonexistent natural stream buffer, and/or if the stream bed was not in a natural condition (e.g. filled with silt). Streams were also excluded, if the water quality did not meet reference criteria (see Gore *et al.* 2004). For example, one stream was excluded as a candidate reference stream for an extremely high phosphorus value. On the other hand, streams originally classified as impaired on a few occasions appeared to be in a reference condition status, by best professional judgment of the field collection teams. However, in each case, the final stream assessment was based on macroinvertebrate data, as well as observational data.

Once stream indices were developed, several trends were observed. Within each ecoregion, the discrimination efficiencies (DE) for each individual subecoregion tended to be much higher than the ecoregion level DE. Smaller ecoregions containing fewer subecoregions were found to have higher DE than ecoregions containing geographically widespread subecoregions. This reveals that subecoregion level indices more easily discriminate between reference and impaired conditions than ecoregion level indices. As a result, it was found that multimetrics indices are most effective when used to describe stream condition on a more localized scale such as the subecoregion level.

When streams within a subecoregion vary widely, it can be shown that streams should be grouped into statistically similar categories. The Southern Coastal Plain Ecoregion (75) is one example. The Southern Coastal Plain Ecoregion (75) is located along the Georgia coast. In this area, many streams are tidally-influenced resulting in different chemical, physical, and biological characteristics than streams without tidal effects. In the Sea Islands/Coastal Marsh Subecoregion (75j), approximately half of the streams sampled were tidally influenced. When the Sea Islands/Coastal Marsh Subecoregion (75j) index was developed, the discrimination efficiency was approximately 50 percent. Tidal streams and non-tidal stream were grouped to determine if separate indices would better describe the subecoregion. One index included tidal streams from Sea Islands/Coastal Marsh Subecoregion (75j) and one tidal stream from Sea Island Flatwoods Subecoregion (75f). In the non-tidal index, all streams were non-tidal streams from Sea Islands/Coastal March Subecoregion (75j). It was found that both indices had higher discrimination efficiencies than the original combined index. It can be concluded, in some cases, that streams in subecoregions require further classification in order to describe the lotic ecosystems with a higher level of precision.

At the ecoregion level, discrimination efficiencies ranged from 67-100 percent with an average of 81 percent. When the number of subecoregions increased in an ecoregion, the discrimination efficiency decreased. Ecoregions with more subecoregions have more variability and, as a result, indices become less accurate when discriminating between reference and impaired conditions. Subecoregion level indices had discrimination efficiencies that were on average 10 percent higher than ecoregion level indices. This result suggests that subecoregion-level-indices should be used for water management purposes.

When indices were developed, metrics were chosen primarily by discrimination efficiency and secondly by metric category. Metrics were selected so that each functional or organizational category would be represented in order to most accurately describe the benthic community as they exist. All indices at the ecoregion and subecoregion level included metrics from most metric categories except Southern Coastal Plain Ecoregion (75). Due to low discrimination efficiency, the Southern Coastal Plain Ecoregion index only had

metrics from composition and tolerance categories. In Southern Coastal Plain Ecoregion (75), subecoregion indices had metrics from composition, tolerance, and functional feeding group categories. The only exception was Sea Islands/Coastal Marsh Subecoregion (75j) tidal, which had one richness metric. In Southern Coastal Plain Ecoregion (75), stream conditions were found to be significantly different based on the overall ability of metric categories to discriminate between reference and impaired conditions.

All streams were selected based on GIS land use data and discrete screening filters and the resulting indices and rating system were developed to describe stream conditions (Gore *et al.* 2004). To determine if any relationships were present between each the index score and percent land use, the Pearson Product-Moment Correlation was used (MDEQ 2003). Index scores and percentland-use did not strongly correlate at the subecoregion level and no significant correlations were found at the ecoregion level. Although the relationships may not have been significant, a trend was observed between index scores and the percent land use. Index scores were most often positively correlated with percent natural land use and negatively correlated with percent urban and total agriculture land use. As shown in Table 122, the index score has the ability to detect changes in land use and whether this change has a positive or negative effect on the natural condition within each ecoregion or subecoregion.

In this study, several problems have been noted in the process of collecting stream data. Although streams were sampled in all ecoregions of Georgia except for the Okefenokee Swamp, the sample size for each ecoregion and subecoregion was limited. Most streams were only sampled once, so there are no time comparison data. Sampling took place during the winter macroinvertebrate season between September and February. Streams sampled early or late in the season may have a higher level of variation between sites than streams sampled within the same month (Merritt et al. 1996). Stream data in this study may not be comparable to samples taken during the summer months.

One major problem this study encountered was record low stream flows. Sampling took place between the years of 2000-2003. Georgia entered a drought in 1999 and that drought was not relieved until the Fall of 2002. As a result, data were collected, for the most part, during a drought. Some streams in Southeast Georgia were completely dry and were not sampled until the winter of 2003. The results of this study were influenced by the lack of precipitation during the sampling seasons, therefore the impact of drought conditions on the macroinvertebrate data is not known. Further research is required to determine the full impact of Georgia's drought on the results of this study.

Lastly, as with all scientific studies, researcher error may have affected the results of this study. At each level of data collection and analysis, researcher error was monitored through quality control and quality assurance, as noted in the Quality Assurance Project Plan (QAPP): Ecoregions Reference Site Project for Wadeable Streams in Georgia (Columbus State University 2000, Ferring 2005).

The Multimetric Rating System (MRS) has many applications for water resource management. The MRS is simple to use, relatively inexpensive, and an extremely versatile water management tool. By grouping streams into three stream condition categories, the MRS is a simple method for determining biological and ecological conditions within a stream system, as well as, overall water quality. The MRS requires only limited technical knowledge, which allows ease of use for water mangers.

As prescribed by Section 319 of the Clean Water Act, the Multimetric Rating System (MRS) may be used to classify wadeable streams in Georgia. By using the three MRS rating categories, streams may be grouped into three health conditions. The MRS may be used to prioritize the Department of Natural Resource's efforts to identify, maintain, and restore wadeable streams in Georgia.

The Multimetric Rating System (MRS) is a cost-effective water monitoring tool. Based on macroinvertebrate sampling data, sampling cost is relatively inexpensive using low-tech sampling methods (Williams 2004). The MRS is also economical because can be used repeatedly to access individual streams for a specific region where a reference index has been developed.

State programs and local municipalities may find the Multimetric Rating System (MRS) useful for determining how to distribute public funds. For example, the MRS can identify streams which rate "C" (poor or very poor) for a specific ecoregion or subecoregion. With limited resources, water resource managers may decide to devote time and funds to monitoring and restoring streams that are in the most critical condition.

As mandated by the Environmental Protection Agency, each state is required to develop water quality standards. The Multimetric Rating System (MRS) can be used to determine water quality and develop water quality standards. Since the MRS is based on benthic macroinvertebrate data, this type of data can be used to characterize the stream condition, and therefore water quality present over a period of time. Using water quality measures for a range of stream conditions, water quality standards may be developed for a certain ecoregion or subecoregion. The MRS provides information specific to an ecoregion or subecoregion making water quality standards more accurate for a specific area.

The Multimetric Rating System (MRS) can be applied to geographic regions within the United Stated and throughout the world. By sampling the macroinvertebrate community and developing a multimetric index, the MRS can describe any stream community and its biological condition. Since the MRS is based on a multimetric system, this multifaceted approach will be able to accurately determine stream condition.

In conclusion, the Multimetric Rating System should be used as a tool for determining the overall condition of Georgia's streams. The Multimetric Rating

System is also applicable for determining stream conditions, water management decisions, and water quality criteria. Using the Multimetric Rating System, water quality standards would encompass the condition of the entire water community including the physical, chemical, and biological elements. Using Rapid Bioassessment Protocol, a proven EPA assessment method, the Multimetric Rating System for Streams in Georgia was developed as a management tool specifically for Georgia's streams. The Multimetric Rating System, a standard method for determining stream condition, may be adapted to apply to areas across the United States and throughout the world.

References

- Barbour, M. T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water: Washington, D.C.
- Barbour, M. T. 1997. The Re-invention of Biological Assessment in the U. S. Human and Ecological Risk Assessment 3: 933-940.
- Barbour, M. T., J. B. Stribling, and J. R. Karr. 1995. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Ed. Davis, W. S. and T. P. Simon. Lewis Publishers: New York. 415. (63-77).
- Berry, J. F. and M. S. Dennison. 2000. The Environmental Law and Compliance Handbook. McGraw-Hill: New York, 109-110. 807p.
- Caton, L.W. 1991. Improved Subsampling Methods for the EPA "Rapid Bioassessment" Benthic Protocols. Bulletin of the North American Benthological Society 8(3): 317-319.
- Columbus State University. 2000. Quality Assurance Project Plan (QAPP): Ecoregions Reference Site Project for Wadeable Streams in Georgia. Prepared for: Georgia Environmental Protection Division (GAEPD) and U. S. Environmental Protection Agency (USEPA).
- Ferring, T. 2005. Analysis of QA/QC Protocols and Value of Data to the Development of Reference Criteria in the Georgia Ecoregions Project. Masters Thesis. Columbus State University. Columbus, GA.
- Georgia Bioassessment Protocol. [Draft] Georgia Department of Natural Resources.
- Gore, J. A., J. R. Olson, D. L. Hughes, P. M. Brossett. 2004. Reference Conditions for Wadeable Streams in Georgia with a Multimetric Index for the Bioassessment and Discrimination of Reference and Impaired Streams. Columbus State University. 363p.
- Hilsenhoff, W. L. 1987. An Improved Biotic Index of Organic Stream Pollution. The Great Lakes Entomologist. 20. 31-39.

- Griffith, G. E., J. M. Omernik, J. A. Cornstock, S. Lawrence, and T. Foster. 2001. Level III and IV Ecoregions of Georgia [ecoregional boundary data sets in a polygonal vector format as ArcInfo export coverage on the Internet]. Revision 5. Corvallis OR: US EPA, National Health and Environmental Effects Research Lab/ORD, Western Ecology Division. Can be obtained from Georgia Department of Natural Resources.
- Jessup, B. and J. Gerritsen. Tetra Tech, Inc. 2000. Development of a Multimetric Index for Biological Assessment of Idaho Streams using Benthic Macroinvertebrates. Idaho Department of Environmental Quality.
- Karr, J. R. and E. W. Chu. 1999. Restoring Life in Running Waters: Better Biological Monitoring. Island Press: Washington D.C. 206. (168-170).
- Karr, J. R. 1991. Biological integrity: A Long-neglected Aspect of Water Resource Management. Ecological Applications 1: 66-84.
- Karr, J. R. 1981. Assessment of Biotic Integrity using Fish Communities. Fisheries 6: 21-27.
- Merritt, R. W., K. W. Cummins, and V. H. Resh. 1996. Design of Aquatic Insect Studies: Collecting, Sampling, and Rearing Procedures. An Introduction to the Aquatic Insects of North America. 3rd ed. 862: 12-28.
- Mississippi Department of Environmental Quality (MDEQ). 2003. Development and application of the Mississippi benthic index of stream quality (M-BISQ). Mississippi Department of Environmental Quality, Office of Pollution Control, Jackson, Mississippi (for further information, contact Mr. Randy Reed [601-961-5158]).
- Murtaugh, P. A. 1996. The Statistical Evaluation of Ecological Indicators. Ecological Applications 6 (1): 132-139.
- Omernik, J. M. 1987. Map Supplement: Ecoregions of the Conterminous United States. Annuals of the Association of American Geographers 77: 118-125.
- Paul, M.J. and J. Gerritsen. (Tetra Tech, Inc) 2002. Draft Statistical Guidance for Developing Indicators for Rivers and Streams: A Guide for Constructing Multimetric and Multivariate Predictive Bioassessment Models. EPA Office of Research and Development.

- Rankin, E.T. 1989. The Qualitative Habitat Evaluation Index (QHEI): Rational, Methods, and Application. State of Ohio Environmental Protection Agency. Ecological Assessment Section. Division of Water Quality, Planning, and Assessment.
- Rankin, E. T. 1995. Habitat Indices in Water Resource Quality Assessment. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Ed. Davis, W. S. and T. P. Simon. Lewis Publishers: New York. 415. (181-208).
- Ricker, W. E. 1934. An Ecological Classification of Certain Ontario Streams. The University of Toronto Press. Publications of the Ontario Fisheries Research Laboratory. No 49. University of Toronto Studies, Biological Series No 37. 114 pages.
- Resh, V.H. 1995. Freshwater Benthic Macroinvertebrates and Rapid Assessment Procedures for Water Quality Monitoring in Developing and Newly Industrialized Countries. Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Ed. Davis, W. S. and T. P. Simon. Lewis Publishers: New York. 415. (167-177).

Statsoft Inc. 2000. Statistica. Version 6.1. Computer Software. Tulsa, OK.

- Tetra Tech, Inc. 2001. Ecological Data Application System (EDAS). Version 3.3.2k. Computer Software. Owings Mills, MD (for further information, contact Mr. Erik Leppo [410-356-8993]).
- Tetra Tech, Inc. 2001. Watershed Characterization Report. Rockdale County Report.
- Vermont Department of Environmental Conservation. Feb 2004. Biocriteria for Fish and Macroinvertebrate Assemblages in Vermont Wadeable Streams and Rivers: Development Phase. Water Quality Division. Biomonitoring and Aquatic Studies Session.
- Williams, J.A. 2004. A Cost Effective Approach to Taxonomic Resolution for Bioassessment and Monitoring Programs in the State of Georgia. Masters Thesis. Columbus State University, Columbus, Georgia.

